MACHIN'S QUADRATURE OF THE CIRCLE. TRACT 17.
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But we may conclude this to be the best of them all, as he
did not publish any other besides it.

M. Euler too, in his ¢ Introductio in Analysin Infinitorum,”
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greater, and { the less: then it is known, that the tangent of
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values of £ The letters a, &, ¢, d, &c, denote the several

suceessive fangents.

1. Take ¢ = 1, then the theorem ?l gives a=1, b=—1
Thercfore the arc of 45°, or Lth of the urulm[u'cnue, is mther
equal to the sum of tlu_- two arcs of which 1 and £ are the
tangents, or to the difference between the arc of which the
tangent is £, and the double of the arc of which the tangent

is 13 that is, putting a = the arc of 45°, then

I 1 1 1
5 =t T g &e.)
Ai =
1 1 1 1 1
e\_" s * (=55t s 79 T oph &e.)
1 1 1 1
B e e e
: ! 3.4 .45 .43 t 9.44 S
o, A= 1 I 1 1 v 1 s
7 X (1= 519" A0 T 5.0t — 5.

The former of these values -J{ A is 'rlnu same with that before
mentioned, as given by ‘] Fuler; but the latter i1s much
better, as the powers of X converge much faster than those

3
of L,

Corol.—From double the former of these values of a, sub-
tracting the latter, the remainder is,
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A=
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which is a much better theorem than either of the former.

v 31— .
If ¢ be taken = 1, then the expression gives
a==%,b=21. Here the value of @ = & gives the same ex-

pression for the value of a as the first in the foregoing case,
and the value of & = & gives the value of A the very same as

o

in the corollary to the case above.

= . dr—1 . -
8. Taking ¢ = %, the expression iy Swesa= i
sy O = e == _—._?J . Where it is evident that the value
VOL. I. iy
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of ¢ = 5 1s the fittest number afforded by this case; and
hence it appears, that the arc of 45° is equal to the sum of the
arc of which the tangent is %, and the triple of the arc of

which the tangent is 1.

3 G 1 { 1 1 )

i X — e —— s —— s N C

4 3.16 " 5.16* . 7.16% % °
Or that A = 5 5 54 56

+—=%x (1 = —+ —=—+—+ &)

99 3.99* " 5.99%  7.09°
Which is the best theorem that we have yet found, because
the number 99 resolves into the two easy factors 9 and 11.

4. Let now ¢ be taken = 1; then the expression -
JTT
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& =50 =5 ¢ =omd = — o=, Where it 15 ‘evident

that the last number, or the value of d, is the fittest of those
duced 1 his case: and from which it appears, that the
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Which is the very theorem that was invented by Mr. Machin,
as we have before mentioned.
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5. Take now ¢ = %; then the expression - —- gives
G412
5LA 23 a1 241 087 YoM
P RSl R Y D Sl
s 5 ¢ = 050 4 = Tgap ¢ it OF which

numbers it is evident that none are fit for our purpose,

L . - Tr—1 - -
6. Again, take £ = %, and the expression - o will oive
7 T 8

a

_ Gy 11 49 69 . 259
6 = b=gyc=gd=ggme=mnS= " 5
Neither are any of these numbers fit for our purpose.
¥ . gr—1 .
7. In like manner take Z = 1, so shall —— give
7 47 207 1697
8=gb=mc=md=mme =
L " o
ey B = i wr; -l A
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0

8. And if ¢ be taken = —— will give
T

9. Also, if we take ¢ = -t.. the expression ~—+ will give
e LAID _J’ ¥ clis b=y e 10+7 B
9 9 671

¢=inb=Ge= 1965’ ¢ = 133

LC,

= ma . llr—
10. Further, if we take t = 1, the expression ——

1] 49
- B ORI
S : 1 B Ehnaal
11. Lastly, if we take ¢ = 1., the expression e DA
11 J 113 41 ! : 419 4111 &
=1 = gt = =g 6= T1ae3) &€

Here it is evident, that none of these latter cases afford
any numbers that are fit for this purpose. And to try any
other fractions less than 2, for the value of ¢, does not seem
likely to answer any good purpose, especially as the divisors
after 12 become too large to be managed in the easy way of
short division in one line.

By the foregoing means it appears then, that we have dis-
covered five different forms of the value of a, or ith of the
semicircumference, all of which are very proper for readily

computing its length; viz, three forms in the first case and

=

its corollary, one in the 8d case, and one in the 4th case.

Of these, the first and last are the same

as those invented by
Euler and Machin respectively, and the other three are quite
new, as far as I know.

But another remarkable excellence attending the first three

of the before mentioned series, is, that they are capable of

being chauged into others which not only converge still
faster, but in which the converging quantity shall be %, or
some multiple or sub-multiple of it, and so the powers of it
raised with the utmost ease. The series, or theorems, here
meant are these three:
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1 1 1 1 ;
R IR i
Lty A 1 I 1 1 2
[t vk Uiyt 20
1 1 1 g
] - — 4+ —— ——— + &¢
2dly, a = s I?..il i
«=J 1 1 1 1 i
= oy X =gt adey e T
2 1 1 ]
i s 8 Ey Yise e il
b o ..I. Vol e 1 { _I Lol digaiac I_.__ 4 &c).
e 3,49 5.49°
Now if each of these be transformed, by means of the dif-
ferential serics, in cor. 3 p. 64 of the late Mr. Simpson’s
Mathematical Dissertations, they will become of these very
commodious forms, viz,
= 4 4 R s
f TR ST ST T
S e YN 2 4o 68
lﬂz; x(1+35 t 510 t 70 T 59
il 4 82 128
: ; X+ 395+ Fo-t o 15
5ot Yo, o 4 8a 198
L~ 50 X ("t 3900 * 5100 t Aro0 T &
6 2 4a 68
10Xt gt set 7ot &0
a0y, A = M 9 dap A/t

4 — 4 &c).

8.60 '5.50 " 7,60

Where a, &, y, &c, denote always the preceding terms in

B T R
—lsllx( |

each series,

Now it is evident that all these latter series are much easier
than the former ones, to which they respectively correspond
for, because of the powers of 10 here concerned, we have
little more to do than to divide by the series of odd numbers
1378, 55 Ty 94T da.

Of all these three forms, the 2d is the fittest for computs
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ing the required proportion ; because, of the two series of
which it consists, the several terms of the one are found from
the like terms of the other, by dividing these latter by 10,
and its several successive powers, 100, 1000, &c ; that is, the
terms of the one consist of the same figures as the terms of
the other, only removed a certain number of places farther
towards the right hand, in the decuple scale of numbers;
and the number of places by which they must be removed,
1s the same as the distance of each term from the first term
of the series, viz, in the 2d term the figures must be moved
one place lower, in the 3d term two, in the 4th term three,
&e; so that the latter series will consist of but about half the
number of the terms of the former. Thus then this method
may be said to effcet the business by one series only, in
which there is little more to do, than to divide by the several
numbers 1, 8, 5, 7, &c¢; for as to the multiplications by the
numbers in the numerators of the terms, after they become
large, they are easily performed by barely multiplying by
the number 2, and subtracting one number from another: for
since every numerator is less by 2 than the double of its de-
nominator, if d denote any denominator, exclusive always
of the powers of 10, then the coeflicient of that term is

043 a

2’
t]]thli; to do which Ehurc:l'nrr‘, mullipl}' it h_\-‘ 2, that is
double it, and divide that double by the divisor d, and sub-

by which the preceding term is to be mul-

i)

tract the quotient from the said double.
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