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26. For equations of higher dimensions, as the 5th, the 6th,

the 7th, &c, vve might, in imitation of this last method, com¬

bine other forms of quantities together. Thus, for the 5th

power, we might compare it either with (x — n) 4 x (.r — b),

or with (y — a) 3 x (.r — b)1 2 , or with (x — a) 3 x (x — b) x

(x — c), or with (.r— a) 2 x (.r— b) 2 X {x — c ). And so for

the other powers.

TRACT XII.

OF THE BINOMIAL THEOREM- WITH A DEMONSTRATION

OF THE TRUTH OF IT IN THE GENERAL CASE OF FRAC¬

TIONAL EXPONENTS.

1. It is well known that this celebrated theorem is called

binomial, because it contains a proposition of a quantity con¬

sisting of two terms, as a radix, to be expanded in a series of

equal value. It is also called emphatically the Newtonian

theorem, or Newton’s binomial theorem, because he has com¬

monly been reputed the author of it, as he was indeed for the

case of fractional exponents, which is the most general of

all, and includes all the other particular cases, of powers, or

divisions, &c.

2. The binomial, as proposed in its general form, was, by———— m

Newton, thus expressed p + pa n ; where p is the first term

of the binomial, a the quotient of the second term divided

by the first, and consequently pa is the second term itself;

or pa may represent all the terms of a multinomial, after the

first term, and consequently a the quotient of all those terms,

except the first term, divided by that first term, and may be

either positive or negative ; also — represents the exponent

of the binomial, and may denote any quantity, integral or
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fractional, positive or negative, rational or surd. When the
exponent is integral, the denominator n is equal to 1, and
the quantity then in this form (p -j- pq)’", denotes a binomial
to be raised to some power ; the series for which was fully
determined before Newton’s time, as will be shown in the
course of the 19th Tract of this volume. When the ex¬
ponent is fractional, m and n may be any quantities what¬
ever, m denoting the index of some power to which the
binomial is to be raised, and n the index of the root to be
extracted of that power: and to this case it was first extended
and applied by Newton. When the exponent is negative,
the reciprocal of the same quantity is meant; as

1

(p+pu) . is equal to «•
(p + pq)«

3. Now when the radical binomial is expanded in an equi¬
valent series, it is asserted that it will be in this general

ft ft. m-
form, namely (p + pq)" or f* x (1 + q)"~ =

— mm m—n in m—n m —2 n
p» x 1 + -Q + - . ~ . -aT . -^-a 3 + &c),

™ m m —n m —2// in —3 n

or P« X 1 + —AG + bq + ^ CQ \- —jy- DQ + &c.

where the law of the progression is visible, and the quanti¬
ties p, m , n, a, include their signs -|- or —, the terms of the
series being all positive when a is positive, and alternately
positive and negative when a is negative, independent how¬
ever of the effect of the coefficients made up of m and n :
also a, b, c, d, &c, in the latter form, denote each preceding
term. This latter form is the easier in practice, when we
want to collect the sum of the terms of a series; but the
former is the fitter for showing the law of the progression
of the terms.

4. The truth of this series was not demonstrated by-New¬
ton, but only inferred by way of induction. Since his time
however, several attempts have been made to demonstrate it,
with various success, and in various ways; of which however
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those are justly preferred, which proceed by pure algebra,

and without the help of fluxions. And such has been es¬

teemed the difficulty of proving the general case, independ¬

ent of the doctrine of fluxions, that many eminent mathe¬

maticians to this day account the demonstration not fully

accomplished, and still a thing greatly to be desired. Such

a demonstration I think is here effected. But before deliver¬

ing it, it may not be improper to premise somewhat of the

history of this theorem, its rise, progress, extension, and de¬
monstrations.

S. Till very lately the prevailing opinion has been, that

the theorem was not only invented by Newton, but first of

all by him ; that is, in that state of perfection in which the

terms of the series, for any assigned power whatever, can be

found independently of the terms of the preceding powers ;

namely, the second term from the first, the third term from

the second, the fourth term from the third, and so on, by a

general rule. Upon this point I have already given an opi¬

nion in the history to my logarithms, above cited, and I shall

here enlarge somewhat further on the same head.

That Newton invented it himself, I make no doubt. But

that he was not the first inventor, is at least as certain. It

was desoribed by Briggs, in his Trigonometria Britannica,

long before Newton was born; not indeed for fractional ex¬

ponents, for that was the application of Newton, but for any

integral power whatever, and that by the general law of the

terms as laid down by Newton, independent of the terms of

the powers preceding that which is required. For as to the

generation of the coefficients of the terms of one power from

those of the preceding powers, successively one after another,

it was remarked by Yieta, Qughtred, and many others, and

was not unknown to much more early writers on arithmetic

and algebra, as will be manifest hv a slight inspection of their

works, as well' as the gradual advance the property made,

both in extent and perspicuity, under the hands of the suc¬

cessive masters in arithmetic, every one adding somewhat

tnore towards the perfection of it.
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6. Now the knowledge of this property of the coefficients
of the terms in the powers of a binomial, is at least as old as
the practice of the extraction of roots; for this property was
both the foundation and the principle, as well as the means
of those extractions. And as the writers on arithmetic be¬
came acquainted with the nature of the coefficients in powers
still higher, just so much higher did they extend the extrac¬
tion of roots, still making use of this property. At first it
seems they were only acquainted with the nature of the square,
which consists of these three terms, 1, 2, 1 • and accord¬
ingly they extracted fhe square roots of numbers by means
of them ; but went np further. The nature of the cube next
presented itself, whi.ch consists of these four terms, 1, 3, 3, 1;
and by means of these they extracted the cubic roots of num¬
bers, ill the same manner as we do at present. And this was
the extent of their extractions in the time of L.ucas de Burgo,
an Italian, who, from 1470 to 1500, wrote several tracts on
arithmetic, containing the sum of what was then known of
this science, which chiefly consisted in the doctrine of the
proportions of numbers, the nature of figurate numbers,
and the extraction of roots, as far as the cubic root ilic!u r
(lively.

7. It was not long however before the nature of the co T
efficients of all the higher powers became known, and tallies
formed for constructing them indefinitely. For in the year
1544 came out, at Norimberg, an excellent treatise of arith T
metic and algebra, by Michael Stifelius, a German divine,
and an honest, but a weak, disciple of Luther. In this^work,
Arithmetica Integra, of Stifelius, are contained several curious
things, some of which have been ascribed to a much later
date. He here treats, pretty fully and ably, of progressional
and figurate numbers, and in particular of the following table
for constructing both them and the eoefficipnts of the terms
of all powers of a binomial, which has been so often used
since bis time for these and other purposes, and which more
than a century after \vas ? by Pascal, otherwise called ffia
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arithmetical triangle, but who only mentioned some addi¬
tional properties of the table.

1
2
3
4
5

6

7
S
9

10
11
12
13

14
13
16n

3
6
10 10
15 20
21 35 35

28 56 70
36 84 126 126
45 120 210 252
55 165 330 462
66 220 495 792
78 286 715 1287
91 364 1001 2002
105 455 1 3 n 5 3003
120 560 1820 4368
136 680 2380 6188

462
924
1716 1716
3003 3432
5005 6135 6435
8008 11440 12870
12376 19448 24310

Stifelius here observes that the horizontal lines of this table
furnish the coefficients of the terms of the correspondent
powers of a binomial; and teaches how to use them in ex¬
tracting the roots of all powers whatever. And after him the
same table was used for the same purpose, by Cardan, and
Stevin, and the other writers on arithmetic. I suspect how¬
ever, that the nature of this table was known much earlier
than the time of Stifelius, at least so far as regards the pro¬
gressions of ligurate numbers, a doctrine amply treated of
by Nichomachus, who lived, according to some, before Eu¬
clid, but not till long after him according to others. His
work on arithmetic was published at Paris in 1538 ; and it is
supposed was chiefly copied into the treatise on the same
subject by Boethius : but I have never seen either of these
two works. Though indeed Cardan seems to ascribe the in¬
vention of the table to Stifelius; but I suppose that is only
to be understood of its application to the extraction of roots.
See Cardan’s Opus Novum de Proportionibus, where he quotes
it, and extracts the table and its use from Stifelius’s book.
Cardan also, at p. 185, ct seq. of the same work, makes use
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of a like table to find the number of variations of things, or

conjugations as he calls them.

8. The contemplation of this table has probably been at¬
tended with the invention and extension of some of our most

curious discoveries in mathematics, both in regard to the

powers of a binomial, with the consequent extraction of

roots, the doctrine of angular sections by Vieta, and the dif¬

ferential method by Brings and others. For, one or two of

the powers or sections being once known, the table would be

of excellent use in discovering and constructing the rest.

And accordingly we find this table used on many occasions

by Stifclius, Cardan, Stevin, Vieta, Briggs, Oughtred, Mer¬

cator, Pascal, &c, &c.

9. On this occasion I cannot help mentioning the ample

manner in which I see St;felius, at fol. 35, et seq. of the same

book, treats of the nature and use of logarithms, though not

under the same name, but under the idea of a series of arith-

meticals, adapted to a series of geometricals. He there ex¬

plains all their uses; such as, that the addition of them, an¬

swers to the multiplication of their geometricals; subtraction

to division ; multiplication of exponents, to involution ; and

dividing of exponents, to evolution. And he exemplifies the

use of them in cases of the Rule-of-Three, and in finding

mean proportionals between given terms, and such like, ex¬

actly as is done in logarithms. So that he seems to have

been in the full possession of the idea of logarithms, and

wanted only the necessity of troublesome calculations to in¬
duce him to make a table of such numbers.

10. But though the nature and construction of this table,

namely of figurate numbers, was thus early known, and em¬

ployed in the raising of powers, and extracting of roots; yet

it was only by raising the numbers one from another bv con¬

tinual additions, and then taking them from the table for use

when wanted ; till Briggs first pointed out the way of raising

any horizontal line in the foregoing table by itself, without

any of the preceding lines; and thus teaching to raise the

terms of any power of a binomial, independent of any other
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powers; and so gave the substance of the binomial series in
words, wanting only the notation in symbols; as it is shown
at large in the 19th Tract, in this volume.

11. Whatever was known however of this matter, related
only to pure or integral powers, no one before Newton hav¬
ing thought of extracting roots by infinite series. He hap¬
pily discovered, that, by considering powers and roots in a
continued series, roots being as powers having fractional ex¬
ponents, the same binomial series would equally serve for
them all, whether the index should be fractional or integral,
or the series be finite or infinite,

12. The truth of this method however was long known
only by trial in particular cases, and by induction from ana¬
logy. Nor does it appear that even Newton himself ever
attempted any direct proof of it, But various demonstrations
of this theorem have been since given by the more modern
mathematicians, of which some are by means of the doctrine
of fluxions, and others, more legally, from the pure principles
of algebra only. Some of which I shall here give a short ac-
count of.

13. One of the first demonstraters of this theorem, was
Mr. James Bernoulli. Ilis demonstration is, among several
other curious things, contained in this little work called Ars
Conjectandi, which has been improperly omitted in the col¬
lection of his works published by his nephew Nicholas Ber¬
noulli. This is a strict demonstration of the binomial theorem
in the case of integral and affirmative powers, and is to this
effect. Supposing the theorem to be true in any one power,
as for instance, in the cube, it must be true in the next higher
power; which he demonstrates. But it is true in the cube,
in the fourth, fifth, sixth, and seventh powers, as will easily
appear by trial, that is by actually raising those powers by
continual multiplications. Therefore it is true in all higher
powers. All this he shows in a regular and legitimate man-
per, from the principles of multiplication, and without the
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help of fluxions. But lie could not extend his proof to the
other cases of the binomial theorem, in which the powers are
fractional. And this demonstration has been copied by Mr.
John Stewart, in his commentary on Newton’s quadrature of
curves. To which he has added, from the principles of
fluxions, a demonstration of the other case, for roots or frac¬
tional exponents,

14. In No. 230 of the Philosophical Transactions for the

year 1697, is given a theorem, by Mr. De Moivre, in imita¬

tion of the binomial theorem, which is extended to any num¬

ber of terms, and thence called the multinomial theorem ;

which is a general expression in a series, for raising any

multinomial quantity to any power. His demonstration of

the truth of this theorem, is independent of the truth of the

binomial theorem, and contains in it a demonstration of the

binomial theorem as a subordinate proposition, or particular

case of the other more general theorem. And this demon¬

stration may be considered as a legitimate one, for pure

powers, founded on the principles of multiplication, that is,

on the doctrine of combinations and permutations. And it

proves that the law of the continuation of the terms, must be

the same in the terms not computed, or not set down, as in
those that are written down.

15. The ingenious Mr. Landen has given an investigation

of the binomial theorem, in his Discourse concerning the Re¬

sidual Analysis, printed in 1758, and in the Residual Analysis

itself, printed in 1764. The investigation is deduced from

this lemma, namely, if m and n be any integers, and q X *

then is
m m

1 + q + q' + <73 - - (m)
■ — X ~ ~~ ■ --

X — V in ‘2m 3>«

J+7”+?" +q" - - (»)
which theorem is made the principal basis of his Residual
Analysis.
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The investigation is thus: the binomial proposed being
m

(1 + x)«, assume it equal to the following series l -|- ax +
bx 1 + cxi &c, with indeterminate coefficients. Then for the
same reason

in

as (1 + x)~ is = 1 + ax + bx'1 + cx 1 &c,
m

will (1 + y) n be = 1 + ay + + cy3 &c.
Then, by subtraction,

m m

(1 + x)« — (l +y)~ = a (.r— y) -f b {x 2 —y l ) + c (x 3 ~y s ) &c.
And, dividing both sides byur —y, and by the lemma, we

£L m. m

have ii±n^i±^ = ( 1 + ,r“ I x

1 + KB + <rrfo + ( rH )s - - - (m)

1 + <rt^ + (KmB-<»>
=a + b(x -\-y) + c (x- + xy -f y1) -\-d[x i -\- x zy + xy 1 +y l ) &c.
Then, as this equation must hold true whatever be the value
of y, take y — x, and it will become

fit

~ x (1 + x) « — a + 2 bx + 3 cx 1 + 4 cx 3 &c.

Consequently, multiplying by 1 + •*■, we have
m

—- x (1 + x ) tt 3 or i fcs equal by the assumption,

viz. + nl I m l •> . m , -s—ax - bx 2 q- cx 3 &c.n n n

, 2b) . 3c ) t , 4(1) , 8

= a] x + 2b\ x +3c$* &c>
Then, by comparing the homologous terms, the value of the
coefficients a, b, c, &c, are deduced for as many terms as are
compared.

A large account is also given of this investigation by the
learned Dr. Hales, in his Analysis Equationum, lately pub¬
lished at Dublin.

Mr. Landen then contrasts this investigation with that by
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the method of fluxions, which is as follows. Assume as
before;

m

(1 + x) n rr l -f- o-x + bx* + cx } + dx* &c.
Take the fluxion of each side, and we have

m ,n —
“ X (1 + ■*’)" x x — ax + 2 bxx + 3 cx zx &c.

Divide by x, or take it = 1, so shall
- —I

— x (1 + x) n =: a + 2 bx + 3 ex'1 + 4d.r 3 &c.

Then multiply by 1 -f- x, and so on as above in the other
way.

16. Besides the above, and an investigation by the cele¬
brated M. Euler, which are the principal demonstrations and
investigations that have been givenofthis important theorem, I
have been shown an ingenious attempt of Mr. Baron Maseres,
to demonstrate this theorem in the case of roots or fractional
exponents, by the help of De Moivre’s multinomial theorem.
But, not being quite satisfied with his own demonstration, as
not expressing the law of continuation of the terms which
are not actually set down, he was pleased to urge me to at¬
tempt a more complete and satisfactory demonstration of the
general case of roots, or fractional exponents. And he fur¬
ther proposed it in this form, namely, that if a be the coeffi¬
cient of one of the terms of the series which is equal to

_L
(1 -f- x)", and p the coefficient of the next preceding term,
and r the coefficient of the next following term ; then, if a

be = j x p, it is required to prove that r will be =

X a. This he observed would be quite perfect and satis¬
factory, as it would include all the terms of the series, as well
those that are omitted, as those that are actually set down.
And I was, in my demonstration, to suppose, if I pleased,
the truth of the binomial and multinomial theorems for in¬
tegral powers, as truths that had been previously and per¬
fectly proved.
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In consequence I sent him soon after the substance of tho
following demonstration ; with which he was quite satisfied*
and which I now proceed to explain at large.

17. Now the binomial integral is (1 + x)" —
a b c d

, ,71 7171— 1 7171— 1 M — 2 7171—l 71—2 71—3l+-x -i--.r* +- x* + — ---1^12^12 3 + 1 2 3 4 s

or 1 + ~.r-
n 71—X

-a.v'~ +
7i —2

bx 3 +
7i —3

■ex" + &-c i

where a, b, c, &c, denote the whole coefficients of the 2d*
3d, 4th, &c, terms, over which they are placed; and in
which the law is this, namely, if p, a, r, be the coefficients
of any three terms in succession, and if
JLp be = a, then is^zici “ r ; as is evident; and which*
h ’ A+l ’ ’

it is granted, has been proved.

18. And the binomial fractional is (1 + x) n —
a b c d

1 1 1
1 +-x-[ -—71 71 2 71

7i 1 1 — n 1
*•*+-■

„ 1 1&c, or 1 + —x-\-’ 71 2 71

71 2 71

71

—H <—
2 71 1 1

X 3 +—
-71 1 — 2 71 1 — 3?z

■ax 1- -f-

3 n
1 — 271

3 71
bx3

n 2 71
1-

3 n

3 71

x *

An

4 71

cx 4 -f &c ;

in which the law is this, namely, if p, a, r be the coefficients

of three terms in succession ; and if

yP be =: q, then is = R. Which is the property to be
proved.
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19. Again, the multinomial integral (1 +A^ + BA’*+cx 3&c)”j
is . i

n ti— 1 ?i — 2 7i — 3 . .
(a)

V)

7t
+ yAX

+ 71 71— 1
1 2 -AX

71

+ T b
n 7t—l 7i —2

+ -T'~‘— kx \
. 92 92—1

(0 +Y AB
w

+ T C

* 1 ' 2 ‘ 3 4 'AX

(«0

92 92—1 92 — 2

+ T—— As
t 71 71—1

+ T-— AO

, 92 92— 1
+ T— 8 ‘

71HI-=D1

71 71—1 71 — 2 92 — 3 92 — 4

T 1 2 3 4 5
71 92— 1 92 — 2 92—3

92 92— 1 92—2
+ . — AX

92 92— 1 92— 2
+ V—:--r— AB*1 2

92 92— 1

+ T .—AD

92 92—1
4-BC 1 1

71+ _ E

&C.

Or, if we put a, b, c, <f, &e, for the coefficients of the 2d, 3d,
4th, 5th, &c, terms, or powers of x, the last series, by sub¬
stitution, will be changed into this form,
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(1 + AX + B.T 2 + c.r 3 + &c)” =. - - - - - - 1

20. Now, to find the series in Art. 18, assume the proposed
binomial equal to a series with indeterminate coefficients, as

Then raise each side to the n power, so shall
1 + X — (1 + AX + B.J’ 1 + cx 3 + &c)".

But it is granted that the multinomial raised to any integral
power is proved, and known to be, as in the last Art. viz,

1 + x — (1 + A.r + bx~ + cx 3 + &c)“ =
a b c

7iA 2mb B(m-])act. 3mc h(2»— l)Rrt4-(M — 2)&b ,

1 + T* + — 8----3 -

It follows then, that if this last series be equal to 1 + x, by
equating the homologous coefficients, all the terms after the
second must vanish, or all the coefficients b, c, d, &c, after
the second term, must be each = 0. Writing therefore, in
this series, 0 for each of the letters b, c, d, &c, it will become
of this more simple form, viz, 1 + x =

a 6 = 0 c = 0

( a )

(]>)

3mc + (2m— 1)b«+ (m

2mb |-(n— 1 )a«!

( c )
3

4md + (3m, — I )ca -f (27! — 2)b!> + (n — 3)AC^ 4
4

(d) +

5me +(4m — 1) d a P (3m — 2 )c6 + (2m — 3) rc + (m — 4)

(1 + x)" = I + ax + b.t? + cx 3 + D.r 4 + &c.

r

I—

&C.

r-*—i

2mb + (m— 1) a a 3?c + (2?i— 1 )b a x 3 -f &c.2
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Put now each of the coefficients, after the second term, = 0,

and we shall have these equations
2«b + (In — 1) Aa = 0

3nc + (2 n — 1) b« = 0
4?2D -f- (3/2 — 1 ) ca =z 0

5/2E + (4n — 1) Da = 0
&c.

The resolution of which equations gives the following values
of the assumed indeterminate coefficients, namely,

1—n 1— 2 n 1— 3 n 1— 4 n ,B -- — Aa, C = -B0, D = - ca, E = -D a, &c :In ’ 3 n ’ in 5n ’ ’

which coefficients are according to the law proposed, namely,
when v is «, then is f—= R. a. e. d.

k 1 h-\-n

21. Also, by equating the second coefficients, namely,

1 — a = ?2A, we find a = —. This being written for a in

the above values of b, c, d, &c, will give the proper series

for the binomial in question, namely, (1 + ar)°
= 1 -f- AX -p B.r z + ex 3 + &c,

1— 2n,. I 1— n
= l + —x + - ax- +n 2« 3n ■bx 3 + &c,

, . 1 ,1 1— n , . 1 1—n 1—2 n ,= 1 d- X + — . -—X 1 d-. . —-— X 3 -f oCC.n n 2 n n 2 n 3n

Of the Form of the Assumed Series.

22. In the demonstrations or investigations of the truth of

the binomial theorem, the butt or object has always been the

law of the coefficients of the terms : the form of the series, as

to the powers of x, having never been disputed, but taken for

granted, either as incapable of receiving a demonstration, or

as too evident to need one. But since the demonstration of

the law of the coefficients has been accomplished, in which

the main, if not the only, difficulty was supposed to consist,

we have, extended our researches still further, and have even

doubted or queried the very form of the terms themselves,
VOL. i. R
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namely, 1 + at -|- bat* + c.r 3 D.r 4 + &c, increasing by

the regular integral series of the powers of x, as assumed to

in consequence of these scruples, I have been required, by a

learned friend, to vindicate the propriety of that assumption.

Which I think is effectually done as follows.

23. To prove then, that any root of the binomial 1 + x

can be represented by a series of this form 1 + x -f- x 1 + x%

+ .r 4 &c, where the coefficients are omitted, our attention

being now employed only on the powers of .r; Jet the seriesi

representing the value of (1 + .r)" be 1 |- A T B 4- c + n |-

<kc ; where A, B, c, &c, now represent the whole of the 2d,

3d, 4th, &c, terms, both their coefficients and the powers of

x, whatever they may be, only increasing from the less to the

greater, because they increase in the terms i + x of the given

binomial itself; and in which the first term must evidently

be 1, the same as in the given binomial.

Raise now (1 + x)", and its equivalent series 1 I A T B

+ c + &c, both to the n power, by the multinomial theorem,

and we shall have, as before,

Then equate the corresponding terms, and we have the first
term 1 = 1.

to the second term x of the binomial. For none of the other

terms of the series are equipollent, or contain the same power

&c ; for they are double, triple, quadruple, &c, in power to

A. Nor yet any of the terms containing b, c, d, &c; be-

denote the quantity (1 -f a)", or the n root of 1 + x. And

a 3 + &c1 +-TA +1 -j- X

11
—B

11 11— 1

1 ’ 1
AB

11

Again, the second term of the series yA, must be equal

of x, with the term —a. Not any of the terms a", a 3, a 4,
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cause, by the supposition, they contain all different and in¬

creasing powers. It follows therefore, that —A makes up

the whole value of the second term x of the given binomial.

Consequently the second term A of the assumed series, con¬

tains only the first power of x and the whole value of that

term a is = — x.n

But all the other equipollent terms of the expanded series

must be equal to nothing, which is the general value of the

terms, after the second, of the given quantity 1 + x or

1 + .r+ 0 + 0 + 0 + &c. Our business is therefore to

find the several orders of equipollent terms of the expanded

series. And these it is asserted will be as they are arranged

above, in which e is equipollent with A 1, c with a 3, d with a 4 ,
and so on.

Now that B is equipollent with A 4, is thus proved. The

value of the third term is 0. But —-— a 2 is a part of the

third term. And it is only a part of that term: otherwise

y---- would be = 0, which it is evident cannot happen in

every value of n, as it ought; for indeed it happens only

when n is = I. Some other quantity then must be equipol¬

lent with y • ——— a 1, and must be joined with it, to make up

the whole third term equal to 0. Now that supplemental

quantity can be no other than yB : for all the other follow¬

ing terms are evidently plupollent than b. It follows there¬

fore, that b is equipollent with a 2, and contains the second
72 72— 1 72

power of x ; or that y— — A+yB=0, and consequently
n— 1 l

— A+B = 0,OrB=-y 2n

Again, the fourth term must be == 0. But the quantities
n n—1 7i — 2 n «—1

----~—a 3 + -—ab are equipollent, and make

-n 1 —7i 1 1 — 7i
~a 2 = ——A.r --— x 1.

71 2 11

up part of that fourth term. They are equipollent, or A 3

equipollent with AB, because a 1 and E are equipollent. And
R 2
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they do not constitute the whole of that term; for if they
, , ,, n n — 1 n — 2 n 11 — 1 , .

did. then would--- a 3, d-.- ab be = Omall
’ 12 3 12

values of n, or -j—A 2 + b = 0 : but it has been just shown

above, that 1a 2 + b = 0 ; it would therefore follow that

would be
11 — 1

- , a circumstance which can only hap-o 2

pen when n = — 1, instead of taking place for every value

of 11. Some other quantity must therefore be joined with

these to make up the whole of the fourth term. And this

supplemental quantity can be no other than yC, because

all the other following quantities are evidently plupollent

than a 3 or ab. It follows therefore, that c is equipollent

"with a 3, and therefore contains the 3d power of x. And the
whole value of c is

1 —n 11 — 2 1—11 1 — 2n
~AB — -

1—2 n

- AB=_ £br B * :
1 1 - n 1 — 9.ii-x\

2 ' 3 “ ' 1 3 3 ii “ n c2n 3 n

And the process is the same for all the other following

terms. Thus then we have proved the law of the whole

series, both with respect to the coefficients of its terms, and

to the powers of the letter .r.

Since the above account was first written, almost 30 years

ago, other demonstrations have been given by several inge¬

nious and learned writers; which may be seen in some of tlie-

later volumes of the Philos. Trans, and elsewhere.
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