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PREFACE.

Having been, for a long series of years, in the constant

habit of preserving original Tracts and dissertations on sci¬

entific subjects; and now enjoying, at a very advanced pe¬

riod of life, some degree of leisure, in consequence of my

retirement from the laborious duties of the Royal Military

Academy; I have anxiously embraced the opportunity of

selecting, and revising, such of those papers as were likely

to be most useful, and of presenting them to the public.

Some few parts of these Tracts have been already printed

in the Philosophical Transactions, and in other works; but

most of them are quite new; and such as are not so, having

been recast and greatly improved, may be also considered

in some measure as original compositions. These papers,

being necessarily of a miscellaneous nature, are here arranged

nearly according to the order of time in which they were

composed; and the description of them, is briefly as fol¬
lows.

volume i.

Tract I, is on the Principles of Bridges.—The original of

this paper was a small pamphlet on the same subject, first pub-

blished by me on a particular occasion at Newcastle, in the

year 1772. It was also republished at London in 1801, nearly

in the same state. But it has been now recomposed, and

greatly enlarged with marry additional propositions, as also

numerous observations, both practical and scientific.

An Appendix is also added, containing my report to the

Committee of Parliament on the project for a new iron
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bridge, of only one arch, proposed to be thrown over the

river Thames at London ; with several other appropriate ar¬

ticles, as below.

Tract ii, exhibits some curious queries concerning Lon¬

don Bridge, proposed in the year 1746 by the magistrates of

the city; with the ingenious answers given to the same, by

Mr. George Dance, surveyor-general of the city works, being

the result of that gentleman’s' examination concerning the

state of the bridge at that time.

Tract hi contains experiments and observations to be

made on the state of London bridge; being the report of a

committee of the members of the Royal Society, addressed to

the common council of the city of London.

T ract tv treats of the effects which might be produced

on the tides in the river Thames, in consequence of erecting

a bridge at Blackfriars. This was an ingenious report, drawn

up by the late Mr. John Robertson, at the request of the city
of London.

Tract v consists of answers, given by me, to questions

proposed by the Select Committee of Parliament, relative to

a proposal, made by Messrs. Telford and Douglas, for erect¬

ing a new iron bridge, of a single arch only, over the river

Thames, instead of the present London bridge.

Tract vi exhibits a brief history of the original invention,

and subsequent improvements of iron bridges, as practised

of late years in this country.

Tract vii is a dissertation on the nature and value of in¬

finite series; explaining the properties of several forms of

such series, as converging, diverging, and neutral.

Tract viii is a new method for the valuation of numeral

infinite series, that have their terms alternately plus and

minus; which is performed by taking continual arithmetical

means between the successive sums, and between the means ;

a method bv which the value or sum of any such series is very

easily and quickly obtained.
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Tract ix is a method of summing the series « + 6x+cx 2

4-dx 3 -)-e'.r 4 +&c, in the case when it converges very slowly }

namely, when x is nearly equal to 1, and the coefficients a ,

b, c, d, &c, decrease very slowly; the signs of all the terms

being plus or positive :—a method which has been considered

a great desideratum in infinite series.

Tract x contains the investigation of certain easy and

general rules, for extracting any root out of a given number ;

exhibiting a general and very easy formula, to serve for all
roots whatever.

Tract xi is a new method of finding, in general and

finite terms, near values of the roots of equations of this form,

x n — px n ~ l +qx n ~ — &c = 0 ; namely, having the terms

alternately plus and minus : being one method more to be

added to the many we are already possessed of, tor deter¬

mining the roots of the higher orders of equations.

Tract xii treats of the binomial theorem ; exhibiting a

demonstration of the truth of it in the general case-of frac¬

tional exponents. The demonstration is of this nature, that

it proves the law of the whole series in a formula of one

single term only : thus, p, a, R, denoting any three succes¬

sive terms of the series, expanded from the given binomial

(1 + x) n , and if -f p a, then is = r, which denotes

the general law of the series, being a new mode of proving the

law of the coefficients of this celebrated theorem. But, be¬

sides this law of the coefficients, the very form of the series

is, for the first time, here demonstrated, viz, that the form

of the series for the developement of the binomial (1 + x ) n ,

with respect to the exponents, will be 1 + ax + bx 2 + cx %

+dx 4 + &c, a form which has heretofore been assumed

without proof.

Tract xiii treats on the common sections of the sphere

and cone: with the demonstration of some other new pro¬

perties of the sphere, which are similar to certain known

properties of the circle. The few propositions whicli form
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part of this tract, is a small specimen of the analogy, and

even identity, of some of the more remarkable properties of

the circle, with those of the sphere. To which are added

some properties of the lines of section, and of contact, be¬

tween the sphere and cone: both of which can be further

extended as occasions may offer.

Tract xiv, on the geometrical division of circles and el¬

lipses into any number of parts having equal perimeters, and

areas either all equal or in any proposed ratios to each other:

constructions which were never before given by any author,

but which, on the contrary, had been accounted impos¬

sible to be effected.

Tract xv contains an approximate geometrical division
of the circumference of the circle.

Tract xvi treats on plane trigonometry, without the use

of the common tables of sines, tangents, and secants: resolv¬

ing all the cases in numbers, by means of certain algebraical

formula; only.

Tract xvii is on Machin’s quadrature of the circle; be¬

ing an investigation of that learned gentleman’s very sim¬

ple and easy series for that purpose, by help of the tangent

of the arc of 45 degrees; which series the author had given

without any proof or investigation.

Tract xviii, a new and general method of finding sim¬

ple and quickly-converging series; by which the proportion

of the diameter of a circle to its circumference may easily be

computed to a great many places of figures. By this method

are found, not only Machin’s series, noticed in the last Tract,

but also several others that are much more simple and easy
than his.

Tract xix, the history of trigonometrical tables, &c :

being a critical description of all the writings on trigono¬

metry made before the invention of logarithms.

Tract xx, the history of logarithms; giving an account

of the inventions and descriptions by several authors on the

different kinds of logarithms.
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Tract xxi,on the construction of logarithms ; exhibiting

the various and peculiar methods employed by all the dif¬

ferent authors, in their several computations of these very
useful numbers.

Tract xxii, treats on the powers of numbers; chiefly re¬

lating to curious properties of the squares, and the cubes,

and other powers of numbers.

Tract xxiii, is a new and easy method of extracting

the square roots of numbers ; very useful in practice.

Tract xxiv, shows how to construct tables of the square-

roots, and cube-roots, and the reciprocals of the series of the

natural numbers ; being a general method, by means of the

law of the differences of such roots and reciprocals of num¬
bers.

Tract xxv, is an extensive table of roots and recipro¬

cals, constructed in the above manner, accompanied also with

the series of the squares and cubes of the same numbers,

VOLUME II.

Tract xxvi, an account of the calculations made from

the survey and measures taken at mount Shichallin, in order

to ascertain the mean density of the earth : being the result

of a laborious calculation, the first ever made to ascertain

that density ; by which it is shown to be nearly equal to 5

times the density of water, or almost double the density of

the rocks at the surface of the earth, and that consequently

the interior of the earth must consist of immense quantities
of metals or metallic ores.

Tract xxvii, consists of calculations to determine at

what point, on the side of a hill, its attraction will be the

greatest. This is inserted as an appendix to the preceding

tract, and intended to direct operations of any future at¬

tempt to ascertain such density, or to corroborate the fore¬

going statement; and, by this determination, it is shown

that the best situation is generally at about \ of the altitude
of the hill.
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Tract xxviii, is an extensive treatise on cubic equations

and infinite senes : showing their nature, properties, and so¬

lutions, both in finite formulas and by expressions in infinite
series.

Tract xxix contains a curious project for a new division

of the quadrantal arc of'the circle, with a view to trigono¬

metrical and other purposes : being intended for the novel

design of Constructing tables of the sines, tangents, and se¬

cants of arcs, to equal parts of the radius of the circle; or

expressing all these lines, as well as the arcs themselves, in

such parts.

Tract xxx, on the sections of spheroids and conoids:

showing that all such plane sections are the same as conic

sections; and that all the parallel sections, in each of these

solids, are like and similar figures.

Tract xxxi, on the comparison of curves of the same

species; showing their mutual relations.

Tract xxxii contains a theorem for the cube-root of an

algebraic binomial, one of the terms being a quadratic radi¬

cal ; useful in the solution of certain cubic equations by

Cardan’s rule.

Tract xxx hi, is a complete history of algebra; tracing

its origin and practice among the ancient Greeks, the Indi¬

ans, Persians, and Arabians; with particular details of the

various peculiarities and improvements, made among dif¬

ferent people, and by several eminent individuals, especially

among the European authors, namely, the Italians, Spaniards,

French, Germans, and the English; in which all the dis¬

coveries and improvements are ascribed to the proper au¬
thors.

Tract xxxiv, exhibits the results of new experiments in

Artillery, for determining the force of fired gunpowder, the

initial velocity of cannon balls, the ranges of projectiles at

different elevations, the resistance of the air to their motions;

the effect of different lengths of guns, and of different quan-
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titities of powder, See, &c: giving a complete detail of all

the circumstances attending these very numerous and ac¬

curate experiments, with many useful philosophical and prac¬

tical inferences deduced from them; the whole forming as

it were a new era in the progress of this curious and important

branch of knowledge.

VOLUME III.

Tract xxxv, on a new Gunpowder Eprouvette; show¬

ing its construction and use, by means of which the strength

and quality of gunpowder may be proved and evinced,

in a way far more exact and easy than by any other
machine.

Tract xxxvi, on the Resistance of the Air to bodies in

motion, as determined by the Whirling Machine : showing

the exact quantity of the air’s resistance to all forms of

bodies, moved through it with slow and moderate motions;

the effects of which, combined with those of the very high

motions of cannon and musket shot, furnish us with a com¬

plete and uniform series of resistances to all degrees of ve¬

locity, from the very slowest perceptible motions, to those of

the highest and most violent.

Tract xxxvii, on the Theory and Practice of Gunnery,

as dependent on the Resistance of the Air. This tract is

employed in stating the deductions abstracted from all the

preceding experiments, and applying them in many pro¬

blems, to the important purposes of Artillery and projectiles.

Here are given complete tables of the quantity of resistance

to balls moving with every degree of velocity; with correct

rules for ascertaining those that are proper to all other

sizes of balls. Here are also given general rules and alge¬

braic formulee, for expressing the resistance to any size of

ball in terms of the velocity ; with a great variety of pro¬

blems for determining the motions of balls in all directions,

upwards, downwards, or obliquely, touching their velocities

and times in motion, with the ranges of projectiles in the air,
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and practical applications to the Cases of gunnery, in a great

variety of useful instances.

Tract xxxviii, being the last, contains a miscellaneous

collection of practical questions, illustrating several of the

principles in the preceding Tracts, with the solutions at

large.

Such are the outlines of a work, which is the result of

many years assiduous study and persevering research ; and

which it is presumed will be found to contain several new

articles, on civil and military science, that may be deemed

of national importance.

It is, in all probability, the last original work that I may

ever be able to offer to the notice of the Public, and I am

therefore the more anxious that it should be found worthy of

their acceptance and regard. To their kind indulgence, in¬

deed, is due whatever success I may have experienced, both

as an Author and Teacher for more than half acentury: and

it is no small satisfaction to reflect, that my humble endea¬

vours, during that period, have not been wholly unsuccessful

in the diffusion of useful knowledge.

To the same liberal encouragement of the Public must like¬

wise be ascribed, in a great measure, the means of the com¬

fortable retirement which I now enjoy, towards the close of

a long and laborious life: and for which I have every reason

to be truly thankful.

London ,
July, 1812.

CHA. HUTTON.
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TRACT I.

THE

PRINCIPLES OF BRIDGES:

CONTAINING

THE MATHEMATICAL DEMONSTRATION OF THE PROPERTIES

OF THE ARCHES, THE THICKNESS OF THE PIERS, THE FORCE

OF THE WATER AGAINST THEM, &C. WITH PRACTICAL OB¬

SERVATIONS AND DIRECTIONS DRAWN FROM THE WHOLE.

THIS Tract, on bridges, originated from the circumstance

of the fall of Newcastle bridge, in the year 1771; which,

with other particulars relative to the Tract, are noticed in

the Preface to that Edition of it; which was as follows:

THE ORIGINAL PREFACE.

A large and elegant bridge, forming a way over a broad

and rapid river, is justly esteemed one of the noblest pieces

of mechanism that man is capable of performing. And the

usefulness of an art which, at the same time that it connects

distant shores by a way over the deep and rapid waters, also

allows those waters and their navigation to pass smooth and

uninterrupted, renders all probable attempts to advance the

theory or practice of it, highly deserving the encouragement

of the public.

This little book is offered as an attempt towards the im¬

provement of the theory of this art, in which the more es¬

sential properties, dimensions, proportions, and other rela-
TOL. I. B

'»
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tions of the various parts of a bridge, are strictly demon¬

strated, and clearly illustrated by various examples. It is

divided into five sections: the 1st treats on the projects of

bridges, containing a regular detail of the various circum¬

stances and considerations that are cognizable in such pro¬

jects. The 2d treats on arches, demonstrating their various

properties, with the relations between their intrados and ex-

trados, and clearly distinguishing the most preferable curves

to be used in a bridge; the first two or three propositions

being instituted after the manner of two or three done by
Mr. Emerson in his Fluxions and Mechanics. The 3d sec¬

tion treats on the piers, demonstrating their thickness ne¬

cessary for supporting any kind of an arch, springing at any

height, both when part of the pier is supposed to be im¬

mersed in water, and when otherwise. The 4th demonstrates

the force of the water against the end or face of the pier,

considered as of different forms; with the best form for di¬

viding the stream, &c. and to it is added a table, showing

the several heights of the fall of the water under the arches,

arising from its velocity and the obstruction of the piers; as

it was composed by Tho. Wright, Esq. of Auckland, in the

county of Durham, who informs me it is part of a work on

which he has spent much time, and with which he intends to

favour the public. And the 5th and last section contains a

Dictionary of the most material terms relating to the sub¬

ject: in which many practical observations and directions

are given, which could not be so regularly nor properly in¬

troduced into the former sections. The whole, it is pre¬

sumed, containing full directions for constituting and adapt¬

ing to one another, the several essential parts of a bridge, so

as to make it the strongest, and the most convenient, both

for the passage over and under it, which the situation and
other circumstances will admit: not indeed for the actual

methods of disposing the stones, making of mortar, or the

external ornaments, &c. those things are not here attempted,

but are left to the discretion of the practical architect, as

being no part of the plan of this undertaking; and for the
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same reason also here are not given any views of bridges,

but only prints of such parts or figures as are necessary in

explaining the elementary parts of the subject.

As uiy profession is not that of an architect, very probably

I should never have turned my thoughts to this subject, so as

to address the public upon it, had it not been for the occasion

of an accident in that part of the country in which 1 reside,

viz. the fall of Newcastle and other bridges on the river

Tyne, on the 17th of November, 1771, occasioned by a high

flood, which rose about 9 feet higher at Newcastle than the

usual spring tides do. This occasion having furnished me

with many opportunities of hearing and seeing very absurd

notions advanced on the subject in general, I thought the

demonstrations of the relations of the essential parts of a

bridge, would not be unacceptable to those architects and

others, who may be capable of perceiving their force and
effects.

Newcastle, 1772.

The original edition, of 1772, being out of print, and the

book being much asked for, a new edition was printed in

1801, at a time when the project of a cast-iron bridge of one

arch, proposed to be built over the Thames at London, by

Messrs. Telford and Douglass, was the subject of much con¬

versation : on which occasion the following addition was made

to the Preface; viz.

This little work, which was hastily composed on a parti¬

cular occasion, having been long out of print, is now as sud¬

denly reprinted in the same form, on the present occasion, of

the report of a new bridge proposed to be thrown across the

Thames, at London: reserving the long intended edition, on

a much larger and more improved plan, till a more conve¬

nient opportunity.
Royal Military Academy, Jan. 12, 1801.

It may here be added, that the whole tract has been now

quite re-cast and composed, and greatly enlarged with more
b 2
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propositions, and numerous observations, botli practical and

scientific. To the end is also added an Appendix, being the

author’s report to the Committee of Parliament, on the pro¬

ject for a new cast-iron bridge, of one arch, over the river at

London; and several other appropriate appendages.

SECTION r.

ON THE PROJECTS OF BRIDGES; WITH THE DESIGN,

TIIE ESTIMATE, &C.

When a bridge is deemed necessary to be built over a

river, the first consideration is the place of it; or what par¬

ticular situation will contain a maximum of the advantages

over the disadvantages. In agitating this important ques¬

tion, every circumstance, certain and probable, attending or

likely to attend the bridge, should be separately, minutely,

and impartially stated and examined; and the advantage or

disadvantage of it rated at a value proportioned to it; then

the difference between the whole advantages and disadvan¬

tages, will be the net value of that particular situation for

which the calculation is made. And by doing the same for

other situations, all their net values will be found, and of

consequence the most preferable situation among them.—

Or, in a competition between two places, if each one’s ad¬

vantage over the other be estimated or valued in every cir¬

cumstance attending them, the sums of their advantages will

show which of them is the better. And the same being done

for this and a third, and so on, the best situation of all will
be obtained.

In this estimation, a great number of particulars must be

included; nothing being omitted that can be found to make

a part of the consideration. Among these, the situation of

the town or place, for the convenience of which the bridge
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is chiefly to be made, will naturally produce an article of

the first consequence; and a great many others, if necessary,

ought to be sacrificed to it. If possible, the bridge should

be placed where there can conveniently be opened and made

passages or streets from the end of it in every direction, and

especially one as nearly in the direction of the bridge itself

as possible, tending towards the body of the town, without

narrows or crooked windings, and easily communicating

with the chief streets, thoroughfares, &c.—And here every

person, in judging of this, should divest himself of all partial

regards or attachments whatever; think and determine for

the good of the whole only, and for posterity as well as for

the present.

The banks or declivities towards the river are also of par¬

ticular concern, as they affect the conveniency of the passage

to and from the bridge, or determine the height of it, on

which in a great measure depends the expense, as well as the

convenience of passage. The breadth of the river, the na¬

vigation upon it, and the quantity of water to be passed, or

the velocity and depth of the stream, form also considera¬

tions of great moment; as they determine the bridge to be

higher or lower, longer or shorter. However, in most cases,

a wide part of the river ought rather to be chosen than a nar¬

row one, especially if it is subject to great tides or floods: for,

the increased velocity of the stream in the narrow part, being

again augmented by the further contraction of the breadth bv

the piers of the bridge, will both incommode the navigation

through the arches, and undermine the piers and endanger

the whole bridge. The nature of the bed of the river is also

of great concern, it having a great influence on the expense;

as upon it, and the depth and velocity of the stream, depend

the manner of laying the foundations, and building the piers.

These are the chief and capital articles of consideration,

which will branch themselves out into other dependent ones,

and so lead to the required estimate of the whole.

Having resolved on the place, the next considerations are,

the form, the estimate of the expense, and the manner of
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execution. With respect to the form; strength, utility, and

beauty ought to he regarded and united ; the chief part of

which lies in the arches. The form of the arches will depend

on their height and span ; and the height on that of the water,

the navigation, and the adjacent hanks. They ought to be

made so high, as that they may easily transmit the water at

its greatest height, either from tides or floods; and their

height and figure ought also to be such as will easily allow of

a convenient passage of the craft through them. This, and

the disposition of the bridge above, so as to render the passage

over it also convenient, make up its utility.—Having fixed the

heights of the arches, their spans are still necessary for deter¬

mining their figure. Their spans will be known by dividing
the whole breadth of the river into a convenient number of

arches and piers, allowing at least the necessary thickness of

the piers out of the whole. In fixing on the number of

arches, let an odd number always be taken; and few and

large ones, rather than man}’ and smaller, if convenient: For

thus we shall have not only fewer foundations and piers to

make, but fewer arches and centres, which will produce

great savings in the expense; and besides, the arches them¬

selves will also require much less materials and workmanship,

and allow of more and better passage for the water and craft

through them; and will appear at the same time more noble

and graceful, especially if constructed in elliptical, or in cy¬

cloidal forms; for the truth of which, it may be sufficient to

refer to that noble and.elegant bridge lately built at Black-

friars, London, by Mr. Mylne ; which might perhaps be ac¬

counted incomparable, at least in England, if the piers were

of equal excellence: but these are too thick, and clumsy, and

their appearance is made still less graceful by the double co¬

lumns placed before them. So that Blackfriar’s arches and

the Westminster’s piers united, would be preferable to either

bridge separately.

If the top of the bridge be a straight horizontal line, the

arches may be made all of a size; if it be a little lower at

the ends than the middle, the arches must proportionally dc-
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crease from the middle towards the ends; but if higher at

the ends than the middle, which can seldom happen, they

may then increase towards the ends. A choice of the most

convenient arches is to be made from some of the following

propositions, where their several properties and effects are

demonstrated and pointed out: Among these, the elliptic,

cycloidal, and equilibrate arch, will generally claim the pre¬

ference, as well on account of the strength, and beauty, as

cheapness or saving in materials and labour: Other particu¬

lars also concerning them may be seen under the word Arch

jm the Dictionary in the last section.

Next find what thickness at the keystone or top will be

necessary for the arches. For which see the word Keyston e

in the Dictionary in the 5th section.—Having thus obtained

all the parts of the arches, with the height of the piers, the

necessary thickness of the piers themselves are next to be

computed. This done, the chief and material requisites are

found; the elevation and plans of the design can then be

drawn, and the calculations of the expense thence made, in¬

cluding the foundations, with such ornamental or accidental

appendages as shall be thought fit; which, being no part of

the plan of this undertaking, is left to the fancy of the

Architect and Builder, together with the practical methods of

carrying the design into execution. I shall however, in the

Dictionary, in the last section, not only describe the terms,

parts, machines, &c, but also speak of their dimensions, pro¬

perties, and any thing else material belonging to them; and

to which therefore I from hence refer for more explicit in¬

formation in each particular article, as well as to these im¬

mediately following propositions, in which the theory of the

arches, piers, &c, are fully and strictly demonstrated.
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SECTION II.

OF THE ARCHES.

PROPOSITION I.

Let there be any number of linen ab, bc, cd, de, Sic. all
in the same vertical plane, connected together and moveable
about the joints or angles a, b, c, d, e, f; the two extreme
points a and g being fixed: It is required to determine the pro¬
portion of the weights to be laid upon the angles b, c, d, Sic.
so that the whole may remain in equilibria.

Solution. —From the
several angles, having
drawn the lines b b, cc,
D d, &c. perpendicular
to the horizon ; about
them, as diagonals,
constitute parallelo- A V-
grams such, that those sides of every two that are at the op¬
posite ends of the given lines, may be equal to each other ;
viz, Laving made one parallelogram inn, take cp = Bn, and
form the parallelogram pq; then take Dr = cq, and make the
parallelogram rs; and take Er = da’, and form the parallelo¬
gram tv; and so on : Then the said vertical diagonals Bb, cc,
d d, ep, &c, of those parallelograms, will be proportional to
the weiguts, as required.

Demonstration. —By the resolution of forces, each of the
weights or forces nb, c c, d d, &c, in the diagonals of the pa¬
rallelograms, is equal to, and may be resolved into, two
forces, expressed by two adjacent sides of the parallelogram;
viz. the force B b may be resolved into the two forces B??2, eh,
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and in those directions; the force c c, into the two forces cp,
c q, and in those directions ; the force nd, into the forces d?’,

ns, and in those directions; and soon. Then, since two
forces that are equal, and in opposite directions, do mutually
balance each other; therefore the several pairs of forces Tin
and cp, cq and df, ns and nt, &c, being equal and opposite,
by tlie construction, mutually destroy or balance eacii other;
and the extreme forces b»i, ev, are balanced by the opposite
resistances of the fixed points a, g. There is no force there¬
fore to change the position of any one of the lines, and con¬
sequently they will all remain in equiiibrio.

Corollary. —Hence, if one of the weights and the positions
of all the lines be given, all the other weights may thence
be found, as well as ail the oblique forces in the direction of
the'bars or lines. And the weight which is given, may either
be that at the lower extremity, as B b, or it may be that at
the vertex nd, or it may be any of the intermediate ones, as
c c: for, whichever of these is given, it will serve, as a diago¬
nal, to form the parallelogram about it; then the sides of this
parallelogram will give the sides of the two next parallelo¬
grams, on each side of the former ; and so on through the
whole collection of the bars. Thus, if the uppermost ver¬
tical weight, or diagonal nd, be the given one: Then draw

dr parallel to de, and ds to DC, so forming the parallelogram

rnsd: then make cq = nr, and nt = ns: and, having drawn
the several indefinite vertical lines Tib, c c, ne, at the angles,
form the parallelograms pq and tv, by drawing qc parallel to

ec, and cp to cd, and te to ef, and ev to de. —Lastly, take
eh = pc, and make the parallelogram inn, by drawing nb pa¬
rallel to ae, and bin parallel to bc. And so on through the
whole.
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PROP. II.

If any number of lines, that are connected together and

moveable about the points of connection, be kept in equilibria by

weights laid on the angles, as in the last proposition: Then

•wil-l the weight on any angle c be universally proportional to

sine of the Z bcd . . , . ,
- -; that is, directly as the sine of tnatS. Z EC C X S. Z. CCD J

angle, and reciprocally as the sines of the two parts or angles

into which that angle is divided by a line drawn through it

perpendicular to the horizon. See the former figure.

Demonstration .—By the last proposition the weights are

.as b b, c c, T>d, &c, where Bn = pc, c q — rD, ds = t:e, &c.

But,, since the angle ab b is = the angle b bn, and the angle
bcc = the angle ccq, &c, these being always the alternate

angles made by a line cutting two other parallel lines; also

the sine of the Z abc = s. Z b nb, and s. Z bcd = s. Z cqc,

these being supplements to each other; by plane trigonometry

we shall have,

(bw = )

(c q~)

( m = )

and so on.

B b X s. Z. AB b
(c P=)

CC X s. ZL. CCD

s. X. ABC “ s. z. BCD ’

CC X s. Z. BCC
(Dr = )

vd X s. z. c/de

s. z. BCD ~ s. z CDE ’

T)d X s Z. CD d
w 11 ve X s. Z CEF

s. z. CDE S. z. DEF ’

Hence,

%b : cc : :

cc :vd : :

Txl: Be : :

s. z ABC S. BCD

s. z AB b s. z ccd’

s. z BCD s. Z CDE

s. z BCC S. Z c/be’

s. z CDE S. /- DEF

s. z CD d ' S. zL cef’ -, &c.

Or, by dividing the latter terms of the first of these pro¬

portions each by s. Z bsc, and then compounding together

two of the proportions, then three of them, &c, striking out

the common factors, and observing that the s. Z bsc is ==

/
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A

s. z bc c, the s. Z ccd = s. end, &c, we shall have the fol¬

lowing proportions; viz,
s. Z ABC s. Z BCD

b/; : cc : : --;— :-----j
s. z abw x s. Z /;bc s. Z bcc x s. Z ccd

■ S. Z ABC S. Z CDE

' S. Z AB/i X S. Z 6bC ' S. Z CDf/ X S. Z £/de’

S. Z ABC S. Z DBF
%b : ec : :-r-— .-,

S. Z ABO X S. Z OBC S. Z DEC X S. Z CEF

and so on.

Otherwise.

Since c p or b n : B m or nb : : s. z Bbn ,

or s. Z ab6 : s. Z ^bc or s. Z bcc :: •-:-r;
s. z bcc s. Z abo

and cp or qc : c^ or Dr : : s. Z ccq or s. Z cd d : s. Z ccq or
1 1

s. z bcc :
S. Z BCC ’ S. Z CD<f’

1

it is clear that cp is as ; that is, the forces wib, pc,s. z BCC

rD, &c. are always reciprocally as the sines of the angles

which they make with the vertical line.

. , . cp x s. Z epe cp x s. Z BCD
And since cc = —— -— —-;

s. Z cap s. Z c cd
. . s. Z BCD

therefore any force or weight cc is as-—-v
J ° s. z ccb x s. Z cca

And this is the same as the property in corol. 4 to the 3d

proposition following.

Corol. If dc be produced to k; then, the sine of the angle

hes being equal to the sine of its supplement bcd, the

same weight or force cc will be always proportional to

-; which three angles together make up
s. z bcc x s. z dcc ° ° 1

two right angles.

Properties similar to the foregoing are otherwise deter¬

mined in the following propositions.
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PROP. III.
>

Let there be any number of lines, or bars, or beams, ab, pc,
cd, de, kc. all in the same vertical plane, connected together

and freely moveable about the joints or angles a, b, c, d, k,

&’c, and kept in equilibria by their own weights, or by weights

only kid on the angles: It is required to assign the proportion

of those weights; as also the force or push in the direction of

the said lines; and the horizontal thrust at every angle.

Solution .—

Through any point,
as d, draw a verti¬
cal line aT>ng, &c :
to which, from any
point, as c, draw
lines in the direction

a

of, or parallel to, the given lines or beams, viz, c a parallel to
ab, and c b parallel to bc, and ce to de, and cf to ef, and eg
to fg, &c; also ch parallel to the horizon, or perpendicular
to the vertical line ang, in which also all these parallels ter¬
minate.

rl hen will all those lines he exactly proportional to the
forces acting or exerted in the directions to which thev arc
parallel, and of all the three kinds, viz. vertical, horizontal,
and oblique. That is, the oblique forces or thrusts in direc¬
tion of the bars. ab, bc, cd, de, ef, fg,
are proportional to their parallels .. ca, cb, cd, ce, cf, eg",
and the vertical weights on the angles b, c, d, e, f, &c,
are as the parts of the vertical .... ab, bn, nc, if, fg,
and the weight of the whole frame arcdefg,
is proportional to the sum ol all the verticals, or to ag;
also the horizontal thrust, at every angle, is every where the
same constant quantity, and is expressed by the constant ho-

/• W
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Demonstration .—All these proportions of the forces derive

and follow immediately from the general well known pro¬

perty, in Statics, that when any forces balance and keep

each other in eqnilibrio, they are respectively in proportion

as the lines drawn parallel to their directions, and terminating
each other.

Thus, the point or angle b is kept in equilibrio by three

forces, viz, the weight laid and acting vertically downward

on that point, and by the two oblique forces or thrusts of the

two beams ab, cb, and in these directions. But c a is parallel

to ab, and cb to bc, and ab to the vertical weight; those

three forces are therefore proportional to the three lines ab,

c a, cb.

In like manner, the angle o is kept in its position by the

weight laid and acting vertical)}’’ on it, and by the two ob¬

lique forces or thrusts in the direction of the bars bc, cd:

consequently these three forces are proportional to the three

lines bo, cb, cd, which are parallel to them.

Also, the three forces keeping the point d in its position,

are proportional to their three parallel lines ne, cd, ce .—

And the three forces balancing the angle e, are proportional

to their three parallel lines ef, ce, cf .—And the three forces

balancing the angle f, are proportional to their three parallel

lines fg, cf, eg. And so on continually, the oblique forces

or thrusts in the directions of the bars or beams, being al¬

ways proportional to the parts of the lines parallel to them,

intercepted by the common vertical line; while the vertical

forces or weights, acting or laid on the angles, are propor¬

tional to the parts of this vertical line intercepted by the two

lines parallel to the lines of the corresponding angles.

Again, with regard to the horizontal force or thrust:

since the line dc represents, or is proportional to the force

in the direction DC, arising from the weight or pressure on

the angle d ; and since the oblique force dc is equivalent to,

and resolves into, the two dh, hc, and in those directions, by

the resolution of forces, viz, the vertical force dh, and the

horizontal force hc ; it follow's, that the horizontal force or
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thrust at the angle d, is proportional to the line ch ; and the

part of the vertical force or iveight on the angle d, which

produces the oblique force dc, is proportional to the part of
the vertical line dh.

In like manner, the oblique force cb, acting at c, in the di¬

rection cb, resolves into the two bn, hc ; therefore the hori¬

zontal force or thrust at the angle c, is expressed by the line

ch, the very same as it was before for the angle d ; and the

vertical pressure at c, arising from the weights on both d

and c, is denoted by the vertical line bn.

Also, the oblique force ac, acting at the angle b, in the

direction ba, resolves into the two uh, hc ; therefore again

the horizontal thrust at the angle b, is represented by the line

ch, the very same as it was at the points c and d ; and the

vertical pressure at b, arising from the weights on b, c, and

d, is expressed by the part of the vertical line an.

Thus also, the oblique force ce, in direction de, resolves

into the two ch, He, being the same horizontal force with

the vertical He; and the oblique force c f, in direction ef, re¬

solves into the two ch, i if; and the oblique force eg, in di¬

rection fg, resolves into the two ch, ng ; and the oblique

force eg, in directipn fg, resolves into the two ch, ii£'; and

so on continually, the horizontal force at every point being

expressed by the same constant line ch ; and the vertical

pressures on the angles by the parts of the verticals, viz, an

the whole vertical pressure at b, from the weights on the

angles b, c, d : and bn the whole pressure on c from the

weights on c and d; and dh the part of the weight on d

causing the oblique force dc ; and ne the other part of the

weight on d causing the oblique pressure de ; and 11/ the

whole vertical pressure at e from the weights on d and e;

and h g the whole vertical pressure on f arising from the

weights laid on d, e and f. And so on.

So that, on the whole,

an denotes the whole weight on the points from d to a. ;

and h g the whole weight on the points from d to g ;

and ag the whole weight on all the points on both sides;
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while ab , bo, Dtf, ef,fg express the several particular weights
laid on the angles b, c, d, e, f.

Also, the horizontal thrust is every where the same con¬

stant quantity, and is denoted by the line ch.

Lastly, the several oblique forces or thrusts, in the direc¬

tions ab, bc, CD, de, ef, fg, are expressed by, or are propor¬

tional to, their corresponding parallel lines, c a, c b, CD, ce,

ef, eg.

Corollary 1. It is obvious, and remarkable, that the

lengths of the bars ab, bc, &c, do not affect or alter the pro¬

portions of any of these loads or thrusts; since all the lines

c a, cb, ab, &c, remain the same, whatever be the lengths of
ab, bc, &c. The positions of the bars, and the weights on

the angles depending mutually on each other,, as well as the

horizontal and oblique, thrusts. Thus, if there be given the

position of dc, and the weights or loads laid on the angles
d, c, b ; set these on the vertical, dh, T>b, ba, then cb, ca

give the directions or positions of cb, ba, as well as the

quantity or proportion ch of the constant horizontal thrust.

Corol. 2. If ch be made radius; then it is visible that h«

is the tangent, and ca the secant of the elevation of ca or ab

above the horizon; also h b is the tangent and cb the secant

of the elevation of cb or cb ; also hd and cd the tangent and

secant of the elevation of cd ; also h e and ce the tangent and

secant of the elevation of ce or de ; also h f and c f the tan¬

gent and secant of the elevation of ef ; and so on ; also the

parts of the vertical ab, bo, ef,fg, denoting the weights laid

on the several angles, are the differences of the said tangents

of elevations. Hence then in general,

1st. The oblique thrusts, in the directions of the bars,

are to one another, directly in proportion as the secants of

their angles of elevation above the horizontal directions; or,

which is the same thing, reciprocally proportional to the co¬

sines of the same elevations, or reciprocally proportional to
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the sines of the vertical angles, a, b, d, e,f, g, &c, made by

the vertical line with the several directions of the bars; be¬

cause the secants of any angles are always reciprocally in

proportion as their cosines.

2 The weight or load laid on each angle, is directly pro¬

portional to the difference between the tangents of the ele¬

vations above the horizon, of the two lines which form the

angle.

3. The horizontal thrust at every angle, is the same con¬

stant quantity, and has the same proportion to the weight on

the top of the uppermost bar, as radius has to the tangent of

the elevation of that bar. Or, as the whole vertical ag, is to

the line ch, so is the weight of the whole assemblage of bars,

to the horizontal thrust. Other properties also, concerning

the weights and the thrusts, might be pointed out, but they

arc less simple and elegant, than the above, and are therefore

omitted ; the following only excepted, which are inserted
here on account of their usefulness.

Corollary 3. It may hence be deduced also, that the
weight or pressure laid on any angle, is directly proportional

to the continual product of the sine of that angle and of the
secants of the elevations of the bars or lines which form it.

Thus, in the triangle be d, in which the side bn is propor¬

tional to the weight laid on the angle c, because the sides of

any triangle are to one another as the sines of their opposite

angles, therefore as sin. d : c b : : sin. ben: bo ; that is, bn is as

— C — x c b ; but the sine of angle d is the cosine of the
sin. d °

elevation dch, and the cosine of any angle is reciprocally

proportional to the secant, therefore bn is as sin. ben x sec.

dch x c b ; and c b being as the secant of the angle ben of

the elevation of be or bc above the horizon, therefore bn is

as sin. ben x sec. ben x sec. dch; and the sine of ben

being the same as the sine of its supplement bcd ; therefore

the weight on the angle c, which is as bn, is as the sin. bcd
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X sec. dch X sec. ben, that is, as the continual product of

the sine of that angle and the secants of the elevations of
its two sides above the horizon.

Corol. 4.—Further, it easily appears also, that the same

weight on any angle c, is directly proportional to the sine of

that angle bcd, and inversely proportional to the sines of

the two parts bcp, dcp, into which the same angle is divided

by the vertical line cp. For the secants of angles are reci¬

procally proportional to their cosines or sines of their com¬

plements : but bcp = cbn, is the complement of the eleva¬

tion ben, and dcp is the complement of the elevation dch ;

therefore the secant of ben x secant of dch is reciprocally

as the sin. bcp X sin. dcp ; also the sine of ben is = the

sine of its supplement bcd ; consequently the weight on the

angle c, which is proportional to sin. Z>cd x sec. ben x
. . . sin. BCD

sec. dch, is also proportional to -——:-, when
1 1 sin. bcp x sin. Dcp

the whole frame or series of angles is balanced, or kept in

equilibrio, by the weights on the angles ; the same as in the

preceding proposition.

Scholium. —The foregoing proposition is veiy fruitful in

its practical consequences, and contains the whole theory of

arches, which may be deduced from the premises by sup¬

posing the constituting bars to become very short, like arch

stones, so as to form the curve of an arch. It appears too,

that the horizontal thrust, which is constant or uniformly the

same throughout, is a proper measuring unit, by means of

which to estimate the other thrusts and pressures by, as they

are all determinable from it and the given positions; and the

value of it, as appears above, may be easily computed from

the uppermost or vertical part alone, or from the whole as¬

semblage together, or from any part of the whole, counted

from the top downwards.

The solution of the foregoing proposition depends on this

consideration, viz, that an assemblage of bars or beams,
VOL. I. C
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being connected together by joints at their extremities, and
freely moveable about them, maybe placed in such a vertical

position, as to be exactly balanced, or kept in equilibrio, by

their mutual thrusts and pressures at the joints ; and that the

effect will be the same if the bars themselves be considered as

without weight, and the angles be pressed down by laying on

them weights which shall be equal to the vertical pressures

at the same angles, produced by the bars in the case when

they are considered as endued with their own natural weights.

And as we have found that the bars may be of any length,

without affecting the general properties and proportions of

the thrusts and pressures, therefore by supposing them to be¬

come short, like arch stones, it is plain that we shall then

have the same principles and properties accommodated to a

real arch of equilibration, or one that supports itself in a per¬

fect balance. It may be further observed, that the conclu¬

sions here derived, in this proposition and its corollaries,

exactly agree with those derived in a very different way, in

the former editions of the principles of bridges, viz, in props.

J and 2, and their corollaries and which have been here re¬

peated, in the foregoing prop. 2.

PROP. IV.

If the whole figure in the third proposition he inverted, or

turned round the horizontal line ag as an axis, till it Ik com¬

pletely reversed, or in the same vertical plane below the first

position, each angle d, d, He, being in the same plumb line ;

and if weights i, k, l, m, n, which are respectively equal to the

weights laid on the angles b, c, d, k, f, of the first figure, be

now suspended by threads from the corresponding angles b,e, d,

c, f, of the lower figure ; then will those weights keep this figure

in exact equilibria, the same as the former , and all the tensions

or forces in the latter case, whether vertical or horizontal

or oblique, will be exactly equal to the corresponding forces

of weight or pressure or thrust in the like directions of the

first figure.
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This necessarily

happens, from the

equality of the

weights, and thesi-

milarity of the po¬
sitions and actions

of the whole in

both cases. Thus,

from the equality

of the correspond¬

ing weights, atthe

Cr

like angles, the © j ®
ratios of the ®

weights, ab, bd, dh, he, &c, in the lower figure, are the very

same as those, ab, bn, dh , He, &c, in the upper figure; and

from the equality of the constant horizontal forces ch , ch,

and the similarity of the positions, the corresponding vertical

lines, denoting the weights, are equal, namely, ab ~ ab, bn

— bd, dh = dh , &c. The same may be said of the oblique

lines also, ca, cb, &c, which being parallel to the beams a b,

be, &c, will denote the tensions of these, in the direction of

their length, the same as the oblique thrusts or pushes in the

upper figures. Thus, all the corresponding weights and

actions, and positions, in the two situations, being exactly

equal and similar, changing only drawing and tension for

pushing and thrusting, the balance and equilibrium of the

upper figure is still preserved the same in the hanging fes¬
toon or lower one.

Scholium .—The same figure, it is evident, will also arise,

if the same weights, i, k, l,m,n, be suspended at like dis¬

tances, a b, be, &c, on a thread, or cord, or chain, &c, having

in itself little or no weight. For the equality of the weights,

and their directions and distances, will put the whole line,

when they come to equilibrium, into the same festoon shape

of figure. So that, whatever properties are inferred in the
c 2
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corollaries to the 3d prop, will equally apply to the festoon
or lower figure hanging in equilibrio.

This is a most useful principle in all cases of equilibriums,
especially to the mere practical mechanist, and enables him
in an experimental way to resolve problems, which the best
mathematicians have found it no easy matter to effect by mere
computation. For thus, in a simple and easy way he ob¬
tains the shape of an equilibrated arch or bridge; and thus
also he readily obtains the positions of the rafters in the frame
of an equilibrated curb or mansard roof; a single instance
of which may serve to show the extent and uses to which
it may be applied. Thus, if it should be required to make a
curb frame roof having a given width

ae, and consisting of four rafters ab,

bc, cd, de, which shall either be
equal or in any given proportion to
each other. There can bc no doubt
but that the best form of the roof will be that which- puts
all its parts in ,equilibrio, so that there may be no un¬
balanced parts, which may require the aid of ties or stays,
to keep the frame in its position. Here the mechanic has
nothing to do, but to take four like but small pieces, that
are either equal or in the same given proportions as those
proposed, and connect them loosely together at the joints
A, b, e, d, e, by pins or strings, so as to be freely move-
able about them; then suspend this y
from two pins, a, e f fixed in
a horizontal line, and the chain
of the pieces will arrange itself in
such a festoon or form, abode, that
all its parts will come to rest in
equilibrio. Then, by inverting the
figure, it will exhibit the form and
frame of a curb roof a£y$e, which will also be in equilibrio,
the thrusts of the pieces now balancing each other, in the
same manner as was done by the mutual pulls or tensions
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of the hanging festoon abcde. By varying the distance ae,

of the points of suspension, moving them nearer to, or farther

off, the chain will take different forms ; then the frame abcde

may be made similar to that form which has the most pleas¬

ing or convenient shape, found above as a model.

Indeed this principle is very fruitful in its practical conse¬

quences. It is easy to perceive that it contains the whole

theory of the construction of arches: for each stone of ail

arch may be considered as one of the rafters or beams in the

foregoing frames, since the whole is sustained by the mere

principle of equilibration, and the method, in its application,

will afford some elegant and simple solutions of the most dif¬

ficult cases of this important problem; some examples of
which will be shown hereafter.

prop. v.

To form mechanically a balanced Festoon arch, on the prin¬

ciples of the last proposition ; having a given pitch or height

and span, and also a given height and form of wall or roadway
over it.

Let am be the given

or proposed span of the

arch, pn its pitch or

greatest height, dk the

thickness at the crown,

and alknm the given an¬

terior form of the wall:

in order to determine the

form of the curve adm

which shall put that wall

in equilibrio.

Invert the whole figure alknm, as in the opposite posi¬

tion hlknu, or construct this latter figure, on the lower side

of am, exactly equal and similar to the proposed upper one;

the point d answering to the point D, and the point k to the

1 9. 3



22 THE PRINCIPLES OF BRIDGES. TRACT I.

point k, &c. Let a very fine and thin, but strong line, such

as a fine siJkencord, or abricklayer’s working line, or perhaps

a very fine and slender chain of small links, be suspended

from the extreme points a and m, and of such a length, that

its middle point may hang at the point d, or a little below it.

Divide the given span or width am into a number of equal

parts, the more the better, as at the points 1,2, 3, 4, 5, &c;

from which draw vertical lines, cutting the festoon chain

or cord in the corresponding points 1, 2, 3, 4, 5, &c. Then

take short pieces of another chain, and suspend them by

these points of the festoon 1, 2, 3, &c, as represented by the

dotted verticals in the lower part of the figure. This will
somewhat alter the form of the curve. If now the new curve

should correspond with the point d, and all the bottoms of

the vertical pieces of appended chain also coincide with the

given line of roadway Ik n, the business is done. But if both

those coincidences do not take place, then alterations must

be made, by trials and by judgment, in lengthening or short¬

ening either the festoon A(/m, or the appended vertical pieces

of chain, or in both, till such time as those coincidences are

accomplished, namely, the bottom of the arch with the point

d, and the bottom of the appended pieces with the boundary

Ik 7i. Then re-invert the whole figure, or otherwise trace out

the upper curve adm exactly like or the same as the lower

one a</m, and there will be obtained an arch sustaining the

wall above in perfect equilibrium.

Scholium .—Thus then, as explained by professor Robison,

we have an easy and practical way, by which any common in¬

telligent workman may readily construct for himself the form

of a real balanced arch, to any proposed design for a bridge.

In this method, the thinner and lighter the festoon line is, so

as to bear but a small proportion to the weight of the ap¬

pended pieces of chain, so much the more exact will the

conclusion be obtained, when the superincumbent wall is of

uniform weight of masonry. But as the festoon line repre¬

sents the line of voussoirs or arcl> stones, in the constructed
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arch, if these only are solid, and the rest of the wall or matter

above them be looser and lighter, then there ought to be an

equality of proportion between the weights of the festoon

,chain and the string or rib of arch stones, and between the

superior wall and the appended pieces of chain ; a circum¬

stance of equality to be obtained by mutual accommodations

' and calculations adapted to the real circumstances of the
case.

The chief objection to the curve found in this way is a

want of elegance, and perhaps too of convenience and of

economy, because it does not spring or rise at right angles

to the horizontal line, but at a much smaller angle; and

which indeed is the case with all curves of equilibration.

However, this is a circumstance which can be very safely

and profitably remedied; for in the part of the flanks near

the piers, it may be cut away to hollow the arch out to any

form we please, so as, for instance, to resemble the elliptical

arch, which is one of the most graceful of all; because the

masonry is so solid and strong in that part. And this will be

not only more agreeable to the eye, but will also leave more

room for water and boats to pass, and will be a saving in the

expence of masonry. To accomplish this end with more re¬

gularity and method, instead of dividing the horizontal line

into equal parts at the points 1, 2, 3, &c, if the festoon chain

itself be so divided, viz, into equal parts, and the pieces of

chain be appended at these, in the manner before mentioned,

then the greater number of these pieces being thus near the

extremities, they will draw the arch more down in that part,

and thus hollow it out there in a more regular and uniform

manner, making the shape more pleasing and commodious,

and yet leaving it sufficiently near a true balance.

The following proposition is here added, to determine the

figure of a balanced arch, on the supposition that the voussoirs

are at liberty to slide on each other. A principle indeed

having no real foundation in fact, though it has been much

insisted on by some persons.
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PROP. VI.

It is proposed to determine the nature and properties of a

balanced arch, as derived from the property of the wedge, or

by considering the voussoirs or arch-stones as Jrusiruips of

wedges.

the upper skies of them forming the exterior or outer curvo

bdfhk, and their butting sides making the joints ab, cd., ef,

gh, ik, &c, which joints produced, meet in the point o, of

the vertical line oab. Through any point b, in that line,

draw the horizontal line bdfhk, or perpendicular to the ver¬

tical line oab, and cutting the directions of the joints in the

respective or corresponding points b, d, f, h, k, &c.

Now every wedge in the balanced arch, supposing its sides

polished, must lie kept in equilibrio, in its place, by the inn-,

tual action of three forces, viz, by its own weight acting in

a direction perpendicular to the horizon, and by the thrust

or pressure of the two adjacent wedges, one on each side, in

directions perpendicular to their sides, or to the joints: So,

for instance, the wedge ad is balanced, or kept in equilibrio,

by its own weight acting in the vertical direction bo, and by

two forces acting perpendicularly to ab and cn; and the

stone cf, by its weight in the vertical direction, and by twq

forces perpendicular to cd and ef. ; also the stone eh, by its

weight acting vertically, and by two forces perpendicular to

and gh ; also the stone gk, by its weight vertically, and

Let acegi &c, be the

inner or lower curve of

an arch, formed of the

voussoirs, or wedge pieces,

the vertical sections of

which are the quadrila¬

terals AD, CF, EH, GK, &C,

considered as so many ele¬

mentary parts of the arch,

M-M f /r -pfc

O
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by two forces perpendicular to gh and ik ; and so on, the
weights all acting in the vertical direction parallel to bao.

But, whenever three forces balance one another, they have

then to each other the same ratios as the sides of a triangle

drawn perpendicular to the directions of the forces. There¬

fore tlie three forces balancing- the wedge ad, are propor¬

tional to the three sides of the triangle old, these sides being

respectively perpendicular to those forces, viz, the side bd

perpendicular to the vertical direction of gravity,
also o b

perpendicular to the force against tlu: joint ab, and o d per¬

pendicular to the force against the joint cd. For the same

reason the wedge cf is balanced by three forces proportional

to the three sides df, od, of, of the triangle o df; and the

wedge eh by forces proportional to the three sides Jh, of,
oh, of the triangle ofk ; and the wedge gic by forces pro¬

portional to the three sides hk, oh, ok, of the triangle ohk;

and so on. So that, in all these cases, the weights of the

wedges, and their oblique push perpendicular to the joints,

will have, these following ratios, viz,

the weights of the wedges - ad, cf, eii, gk, &c,

as the parts of the horizontal - - bd, df, jh, hk, &c,

and the push at the joints as - - o b, od, of, oh, &c,

also the sums of the wedges, or the parts, ad, af, aii, ak,

are proportional to the perpendiculars bd, bf, bh, bk,

which are the tangents of the angles bod,bof,boh, eok,&c,

of which the oblique thrusts od, oj, oh, ok, are the secants,

to the radius o b, which denotes the constant push in the hori¬

zontal direction at every wedge, or every point of the arch.

Which, on the whole, amounts to this, viz, that the weights

of any part of the balanced arch, or set of wedges, com¬

mencing from the vertex, are directly proportional to the

tangents of the angles which the joints make with the vertical

line or direction, while the oblique thrusts, in the directions

of the arch at the extremity, or perpendicular to the joints,

are proportional to the secants of the same angles ; the con¬

stant horizontal push, at every point, being proportional to
the radius.
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And this property comes to the very same thing as the

properties in the foregoing propositions, because the angles

of elevation of the curve at every point, or of the direction

of the tangents there, or of the curve itself, are equal to the

angles in this proposition, which the joints form with the ver¬

tical direction. So that, all the three theories in these four

propositions arc all one and the same in effect, amounting to

the very same thing, and yielding the same conclusions.

And therefore, whatever consequences may further be drawn

from any one of them, may be understood as deduced from
the whole.

Scholium .—In the practice of bridge-building, the hey

piece, or wedge at the crown, is a solid, having its magni¬

tude and weight half on each side of the middle vertical line ;

whereas, in this proposition, it has been supposed that this

wedge is divided and actually separated in two by that line
ab: this however will cause no difference in the theory, nor

yet in the practice; for, in any calculations that may be re¬

quired, it is only necessary to suppose the key piece divided

exactly in the middle, then taking half its weight for the

weight of the piece ad, and computing all the other weights

and angles from the middle line AB.

It has also been supposed, in all the three theories that

have been contemplated, that the constituent parts are

formed of materials perfectly smooth and polished, and put

together without cement, and without all kinds of ties or

bars, so as to leave them quite at liberty to slide over each

other, the parts being kept in a perfect balance by means of

their shape, weight, and disposition only. This, it must be

acknowledged, is not the case in real practice; ashore all

the materials are quite rough, which very much prevents

them from sliding by each other, even when their abutting

surfaces are laid at a considerable slope or angle. But this

circumstance however, so far from being a disadvantage, by

thus deviating from the theory, is on that very account of

great use and benefit. For, the equilibrium among the con-
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stituent parts of the arch, established by the foregoing the¬

ories, is of that nice and critical nature, that the whole hangs

in a kind of tottering state of balance, from the perfect po¬

lish of the parts, so that any the least accidental extraneous

force or pressure, on any particular part, would destroy the

equilibrium, and cause the whole to fall down, except lor

the length of the joints and stones. The theory also sup¬

poses the parts, constituting the fabric, to be exceedingly

small, and may be even round, small, polished globules.

But because of the shape and roughness and magnitude of

the parts, of which an arch is constituted, it comes to pass,

that a moderate degree of imperfection in the structure, or

any accidental shocks or pressure from external objects, has

no sensible effect in displacing or deranging the materials:

for the wedge-like form prevents any piece from easily

dropping out by itself', and the roughness of the sides pre¬

vents the wedges from sliding; also the considerable mag¬

nitude of the stones, or other matter, while it enables them

to bear the weight and pressure of the whole fabric, without

being crushed to pieces, admits of a small displacing of ma¬

terials, or deviation from a perfect balance, as prescribed by

theory, without suffering any sensible inconvenience.

It has been supposed in this proposition, that the direc¬

tions of the joints, cd, ef, gh, &c, when produced, all meet

in the same point o, of the vertical line oar. This however

is not necessary in the theory; as the directions of the

joints may meet the vertical in

so many different points o, o,o,

&c, as in this fig. and yet all

the parts and their affections

have still the same properties.

This will be made evident by

constituting the small trian¬

gles, obd, obf, &c, apart, as in

this figure, by drawing, from one point o, the lines <>b, od,

of, &c, still parallel to the joints ah, cd, ef, &c, meeting

the horizontal line in the points b, d,J\ &c; for, because
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these lines are perpendicular to the actions of the forces, of

pressure and push, of the arch pieces, the same proportions

among these, as before deduced, still take place, and hold

good; viz. that the weights are in proportion as the parts of

the line b dflik, arid the oblicpie push as the corresponding

lines ob, od, of, &c, of which ob is as the horizontal thrust.

It has also been supposed, that the joints are cut or drawn

perpendicular to the inner curve at every point, or that all

the angles at it, c, E, &c, are right-angles. But neither is

this necessary in the theory; for the system of balancing

will be still the same, whatever those angles may be, whether

all alike or all various, as these differences will only cause

an alteration in the weight or length of the arch-pieces,

which still will be represented in their proportions by the

parts of the line bdfhk. And indeed we often see this kind

of oblique joints employed in the small arches in the com¬

mon practice of architecture and building, as over windows,

doors, gateways, &c. But yet such a practice is not to ho

admitted into the larger kind of arches, employed in bridges,

<kc, as being both ungraceful and troublesome, as well as

weakening the fabrick.

It is manifest, from all the theories, that the balancing of

the arch is not restricted to any particular kind of curve or

shape,for either the under or upper curve; as the arch may

be balanced with any particular curves we please. It also

follows very evidently, that the same angles or directions of

tlie joints may be employed to balance a great variety of

arches, and indeed any

this fig.; where,

jf the wedges

>t, b, c , d, &c,

form a balanced

arch, by being
taken in the re¬

quired propor¬
tion to each

other,viz,asthe

differences ofthe

sort of an arch whatever: as in
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tangents of the angles formed by their sides with the verti¬

cal line; then, if the under curve of any of the other lower

arches be assumed of any shape at pleasure, the upper curve

of them will be found, by taking their corresponding

wedges, al, b I, cl, &c, or a2, b2, c2, &c, or <?3, b3, c3, &c,

in the same proportions to each other as the wedges a, b, c,

&c, are in the uppermost arch; and all the sets of wedges
will form balanced arches.

EXAMPLE.

The theory laid down in the preceding propositions,

which give, all of them, the same conclusions, will serve as
a foundation on which to establish a method for construct¬

ing arches of equilibration, on any proposed curve whatever.

The method however will require some further preparation,

to render the application to practice easy and convenient.

We may here, however, in the mean time, just take one ex¬

ample, in order to show the facility of the mode of calcula¬

tion from the theory, so far as it has now been laid down.

In this example, we shall suppose that the intrados curve is

a circular arc, which is formed by the under sides of the

wedge pieces, the joints between which are all perpendicu¬

lar to that curve, as the only proper position, or all directed

exactly to the centre of the curve. We shall also suppose

the wedge pieces to form equal parts of that arc, of the

quantity of 5° each, that is, each wedge subtending at the

centre an angle of 5 degrees, the key, or middle wedge at

the crown, therefore, extending 2 degrees and a half on each

side of the vertical line passing through the centre; and

have 17 other wedges, of equal angle (5°) on each side of the

key, making in all 35 wedges, which, at 5 degrees each, will

form an entire arch of 175 degrees. In this case, the angle

which the sides of the middle wedge forms with the middle

vertical line, will be that of half the breadth of the wedge,

or 2-1 degrees; and the angles which the sides of the other

wedges, on each hand of the crown or key wedge, form with

the vertical direction, will be found by adding continually
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the breadth of each wedge (5 degrees), to the said de¬

grees; by which it will be found that the angles at the cen¬

tre, formed with tiie vertical, by the said lower edges of the

arch pieces, in order after the key, will be as follows, viz,

that of the 2d wedge degrees; that of the 3d, ]2f de¬

grees; that of the 4th, IT*-degrees; and so on to the 17th

or last on each side the key, which will have its lower edge

making an angle of 87*- degrees with the vertical direction:

all which angles, of inclination to the vertical, arc ranged in

the 2d column of the following tablet, the first, or half the

middle wedge, making an angle of 2 } degrees. We shall

also suppose the weight of the middle wedge at the crown

to be a certain given quantity, represented by unity or 1,

and express the several other weights and pressures, as in

the other columns of the said tablet, in terms of that unite

so that all these proportional numbers for the other weights

and pressures, will require to be multiplied by any other

weight of middle wedge which may happen to occur in any
other case.

Now, in regard to the rule for computing all the other

weights and pressures, according to the conclusions from

the preceding theory, it is very easv and simple indeed, viz,

that the weight of any part of the arch, counted from the

vertex or crown downward, is always proportional to the

tangent of the angle of inclination of the lower wedge to the

vertical, while the oblique push or pressure, in direction of

the curve, is proportional to the secant of the same angle,

and the constant horizontal thrust is proportional to the ra¬

dius. For which reason it is, as formerly observed, that the

constant horizontal thrust is a proper radical measuring unit,

by means of which to compute the two other circumstances,

namely, the weight of the arch, and the oblique push or

pressure in the direction of the curve: for, the horizontal

thrust being taken for radius, then the weight of the semi¬

arch will be the tangent of the angle with the vertex, and

the oblique pressure the secant of the same angle, to that

radius. Consequently, if the constant horizontal push be

called A, then the weight of the semiarch will be h x if, or A
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multiplied by the tangent of the side’s inclination to the ver¬

tical, and the oblique pressure of the arch will be h x or

h multiplied by the secant of the same angle. So that, in

calculating the said several weights and oblique pushes ol

the arches, we have nothing to do but to take out, from a

trigonometrical table, the tangents and secants of the seve¬

ral angles of inclination to the vertical, as contained in the

2d column of the tablet, and multiply all the tangents and

secants by the number expressing the constant horizontal

thrust, for all the values of the several weights and pres¬

sures, as arranged in the 3d and 4th columns of the tablet;

tbe products of the tangents being the several weights of the

half arches, in the 4th column, and the products of the se¬

cants being the oblique pressures of the same in the arch’s

direction, as in the 3d column. This calculation will be

rendered still easier by using the log. tangents and secants;

for there will then be nothing to-do, but to take out all the

log. tangents and secants; then to each of them add the con¬

stant log. of the horizontal thrust; lastly, take out the na¬

tural numbers answering to these sums, and they will be the

required weights and pressures.

As to the uniform horizontal thrust, which is the constant

multiplier, its value is easily found thus: It has been shown

that this horizontal thrust is every where in the same pro¬

portion to the weight of half the middle or key wedge, as

radius is to the tangent of half the angle of that wedge;

that is, as t : 1 : : -4- t = h the horizontal thrust, put¬

ting w for the weight of the key piece, and t for the tangent

of half its angle; or, if we put its weight w = 1, then this

will become 4 -4- / = h the horizontal thrust. Now, in the

example, the angle subtended by the key is 5 degrees, the

half of which is 2 lz degrees, and the tangent of this is

•0436602; then 4 or '5 -4- ’0436609 = 11-451883 = A the

constant horizontal thrust, that is, 11 times the weight of

the key piece and nearly one half more; or, the same may

be easier found from the cotangent of the same angle 21

degrees, which is 22-903766, the cotangent of any angle

being equal to tbe reciprocal of its tangent, to the radius 1
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therefore, in general, ~ tang. = the cotang, is = h the

horizontal thrust, and in the present instance the half of the

cotangent 22-903766 is 11-451883 the same value of the
horizontal thrust as before.

Hence then the constant number II’451888 is to be mul¬

tiplied by the tangents of all the vertical angles, to give the

weights of the semiarch, in the 4th column, and by the se¬

cants of the same angles, to give their oblique pressures, as

in the 3d column; or else, to work bv the logarithms, the

log. of the constant number li '451883, which j,s P0588769,

is to be added to all the log. secants and tangents of the said

angles, then the corresponding natural numbers taken, and

ranged in the 3d and 4th columns of the table.
The differences of the numbers in the 4th column are

taken, and ranged in the 5th or last column, for the weights

of the single wedge pieces taken separately, making the

whole of the first or key wedge equal to 1.—The table is

as follows.

No, of
sections.

Vertical
angles of
the joints,
or Z S o.

Oblique pressures,
= /lX SCCiZ.0.

Wts.of half arches,
—//Xtan;Z_0.

Wts.of the sec¬
tions or wedges;

1

decrees.
1 1-46272 0-5 i-

2 n 11-55070 1-50767 1-00767

3 I2i 11-72993 2-53882 1-03115

4 ni 12-00763 3-61076 1-07194

5 2 vf 12-39543 4-74352 1-13276

6 27 i 12-91065 5-96147 1-21795

7 32i 13-57837 ' 7-29565 1-33418

8 3ii 14-43478 8-78734 1-49169

9 42f 15-53267 10 49372 1-70638

10 47t 16-95094 12 49753 2-00381

11 52f 18-81177 14-92439 2-42686

12 57f 21-31377 1 7’97585 3-05146

13 62 4 . 24-80112 21-99886 4-02301

14 67k 29-92521 27-64727 5 ’6484 i

15 721. 38-08334 86-32073 S-67346

16
1* *T 52-91028 51-65611 15-33538

17 82k- 87-73628 86-98568 35-32957

18 874- 262-54 1 1 8 262*29 i 25 175-30557
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From this calculation, as well as from the theorems by

which it is made, it is manifest how greatly the weight and

the pressure of the semiarch increase towards the bottom or

the extremity, where the position of the joint approaches

towards the horizontal direction, or the angle it makes with

the vertical approaches towards a right-angle; and when

that angle actually becomes a right-angle, or the joint quite

horizontal, then the weight and pressure become equal and

infinite, which must naturally be expected, both because the

tangent and secant of the angle'(being a right one) are then

infinite, and also because it. must require an infinite weight

or pressure to balance there the constant given horizontal

thrust, which is perpendicular to the former.

We may here, by the way, stop to examine a little in

what manner the preceding calculation of the weights of the

voussoirs may be employed to give a familiar and easy me¬

chanical construction, that may approach very near to a

true balanced arch. In order to this, we are to consider,

that since the bases, or extents of the under sides, of all the

voussoirs, are equal, it will thence happen that their weights

will have to each other nearly the same ratios as their lengths,

from the under to the upper side of them, or taken in the

direction of the radius, that is perpendicular to the under

curve or intrados, at least when the breadth or angle of these

wedges is very small, which is the case in real practice, the

approach to equality being the nearer indeed as their breadth

is the smaller. And though the angle of 5 degrees, em-

ployed in the preceding calculation, be not such a small

breadth as to render the equality and the construction per¬

fect, it will yet serve to show the manner of proceeding in

such a way of forming the arch, and will besides approach

tolerably near to the truth.

As it is most proper that the joints between the wedges,

in the arch of a bridge, should be in directions perpendicu¬

lar to the under curve of the arch, we shall only exemplify

the method in cases of that sort. For this purpose then, let

us suppose the intrados or under curve to be divided into a
VOL. I. D

r 1- •
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number of equal parts, answering to a breadth of 5 degrees

each, or such that the angle formed by every two adjacent

joints, when produced, shall be an angle of 5 degrees. Let

us then draw a line through the middle point of every one

of these breadths, bisecting them, and in a direction perpen¬

dicular to the curve at every point. Then, by setting- oil',

upon these lines, from the curve upwards, by a proper scale,

lengths which shall have the same ratios to each other as the

weights of the corresponding wedges through which these

lines pass, or proportional to the numbers in the last column

of the foregoing table; then will the lengths of these lines

be the extent of the several voussoirs nearly, and therefore,

their upper extremities or points being connected, by draw¬

ing short lines from one to another, they will limit or form

the extrados, or the upper curve or side of the arch, when

built of uniform materials, so as to be very nearly in equi-
librio.

As it is manifest that the theorems and the, calculation

have no peculiar restricted reference to any particular curve

for the intrados, or under side of the arch, we are therefore

at liberty to assume that curve of any form at pleasure;

therefore the form of it being so assumed, by then applying

the numbers of the foregoing table to it, in the manner

above mentioned, we shall have a balanced arch as required.

And thus by assuming any different shapes of curve for the

intrados, the same numbers in the table will give as many

balanced arches as we please. Assuming then, for the inner

curve, a semicircle, as in the next fig. having its span or dia¬

meter LM 84 feet, consequently its pitch or height oa 42 feet.

We shall also assume ab the thickness of the crown or key-

piece, equal to 6 feet, or the 14th part of the span, being

nearly the proportion employed by good engineers. Divid¬

ing each half arc al, am, into 9 equal parts, of 10 degrees

each, which will be sufficiently small to show the nature and

form of the extrados, containing each an extent of two

wedges or voussoirs; then from the centre o drawing radii

through all the points of division, these, when continued,



SECT. 2. OF THE ARCHES.

passing through the middle of every second wedge, the. first

oab passing through the middle of the key-piece. Then,

on these radii produced, set off, from the arc of the semi¬

circle, ab, Gi-i, &c, every second number in the last column

of the table, when multiplied by 6, the assumed length of

ab; then, drawing with the hand a curved line through the

extremities of all the exterior lines, it will be the extrados

required, exhibiting the
form and limit of the'’ wall

built of uniform materials,

above the circular soffit, so
as to constitute an arch of

equilibration nearly as in

the annexed fie.

Where it is seen that the extrados follows nearly a course

parallel to the intrados for about 30 degrees on each side of

the vertex; after which, it begins to bend the contrary way,

having there a contrary flexure during the rest of its course,

going off to an infinite distance on each side parallel to the

base, making the vonssoirs at last of an infinite length, and

composing all together a form of arch very unfit for adop¬

tion in practice.

We shall now show, in the next proposition, that, by

another very strict and genuine construction, an exterior

curve is derived exactly similar to the curve here obtained:

in the determination of which, some part of the mode of

reasoning in the demonstration of the last prop, is here again

necessarily repeated.

PROP. VII.

If acegi He, be an arch, supporting a wall abici, formed

of the voussoirs or arch stones ad, cf, He, lying aslope, on

smooth surfaces, and having the joints ab, cd, He, every

where perpendicular to the curve of the arch ace He. It is

required to jind the lengths of these arch stones, so that the

whole fabric may be balanced, or kept in equilibria.
D 2
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Let a be the vertex of the

inner curve of the proposed

arch; ab the given thickness

of the wail at the crown, or

length of the arch stone there;

also bao, De o, &c, the joints

produced, making ao the ra¬

dius of curvature at a, and co

at c, and eo at e, &c ; the bases of the slones Ac, ce, eg, Gr,

&e, being so many elements or small parts of the arch; and

the vertical sections of the stones, or the areas of the qua¬

drilaterals ad, cf, eh, gk, being proportional to the weights
of them.

Now every stone in the balanced arch will be kept in

equilibrio by three forces, viz, by its own weight acting

perpendicular to the horizon, and by the pressures of the

two adjacent stones, in directions perpendicular to their

sides, or to the two adjacent joints: So, for instance, the

stone ad is balanced, or kept in equilibrio, by its own weight,

and by two forces acting perpendicularly to ab and CD; and

the stone cf, by its ivcight, and by the two forces perpen¬

dicular to cd and ef; also the stone eh, by its weight, and

by the.two forces perpendicular to ef and gh ; also the stone

gk, by its weight, and by the two forces perpendicular to

gii and ik; and so on; all these weights acting in the ver¬
tical direction bao.

But whenever three forces balance one another, they have

then the same ratios as the sides of a triangle drawn per¬

pendicular to their directions. Therefore, if there be con¬

structed another figure obdfhk, having bk horizontal, or per¬

pendicular to a given vertical line ob ; and having od parallel

to od, and of. to of, and oh to oh, and ok to ok, &c: then

the three forces balancing the stone ad are proportional to

the three sides of the triangle obd, these sides being respect¬

ively perpendicular to those forces; for the same reason,

the stone cf is balanced by the three forces df , od, of; also

the stone eh by the three fh, of, oh; and the stone gk by

kjhfrjj)



SECT. 2. OF THE ARCHES. 37

the three hk, oh, ok; and so on; in all these cases the
weights of the stones being proportional to the bases bd, df,

Jh, hk, of the triangles obd, odf, ofh, ohk. But as these tri¬
angles have all the same common altitude ob, they have the
same ratios as their bases bd, df, &c, which bases, it has
been shown, are proportional to the weights of the stones,
which have also been found proportional to the quadrilateral
areas ad, cf, &c; therefore the quadrilaterals ad, cf, eh, gk,
are respectively proportional to the triangles. o6c/,o£//,0/7;,oA/r.

But, as these small triangles have their angles respectively
equal to the angles of the corresponding sectors, because
their sides are parallel by the construction; that is, the an¬
gle bod = the angle bod, &c; their areas are therefore pro¬
portional to the squares of their corresponding sides;

viz. the sectors obd, oac, obd, ■
proportional to ob 2, oa 2, Ob'1;

and the sectors odf, oce, odf,

proportional to od 2, oc 2, od 2 ; and so on.
Therefore, by taking the differences,

ad : obd : : ob’ — oa 2 : ob 2,
and cf : odf : : od’ - oc2 : od 1,
and eh : ofh : : of 2 — oe 2 : of 1,
and gk : ohk :: oh 2 — og 2 : oh 1, &c.

Hence, if ob 2 be taken = ob 2 — oa 2,
then od 2 is = od 2 — oc 2,
and of 2 is = of 2 - oe 2 ,
and old is = oh 2 — og 2 , &c.

Or, by transposing, ob 2 oa 2 + ob 1,
and od 2 = oc 2 + od 1,

and or ! = oe 2 + of 1,

and oh 2 = og 2 + old, &c.
Which gives us the following geometrical construction,

viz, Produce the joints till oa,oc, oe, og, &c, be equal to
the several radii of curvature at the corresponding points,
A, c, E, &c; to wh ich a lso draw the parallels ob, od, of, &c.
Then take ob = ./ob 2 - oa 2, and draw bdfhk perpendicular
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to ob. Lastly, make od = ^/ or 1 -j- od z, and or = \/oe z + q/ ~,

and on = v /og z + o/i 2, &c ; then shall, the line or curve

drawn through all the points b, d, f, ii, k, &c, be the top

of the wall, so as the whole fabric may be balanced, or kept

in cquilibrio, by the mutual weights and pressures of the

stones, having smooth or polished sides, and at liberty to

descend along them.

Note .—When the given interior curve ace &c, is a circle,

all the radii of curvature will be equal to each other, and

will all have the same centre o.' But in other curves, having

various degrees of curvature, the radii and centres of curva¬
ture will be all different.

thickness at the crown —

ab 6 feet, which is the 14th part of the span. Then take

ob so, that ob x be equal to ob 3 — oa 1 , or ob = ^/ob 2 — oa 1 '

= 23'2379, and through b draw mbn parallel to the base

lm ; from the centre o draw a number of radii o/igh &c,

cutting the circle in as many points g, and the line mn in

as many points h; on the perpendicular ln set off all the

distances Lp equal to the several distances oh, cut on the

radii by the directrix ?n?i; then transfer the distances op to

the same radii produced to h, namely taking on = op; then

shall the points h be so many points of the exterior curve,

through all which points the bounding line being drawn with

a steady hand, it will be as is seen in the figure to this ex¬

ample, which is accurately constructed and drawn by a

scale to the dimensions above given, and which will extend

EXAMPLE.

Suppose the interior
curve to be a Semicircle.

And suppose the span R

or diameter lm to be m j

84 feet, the height or

pitch oa 4 2 feet, and the

n
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infinitely along the directrix mn, this line being indeed an

asymptote to the said curve.

The calculation in numbers is also equally easy and

obvious. Thus, taking any given angle aog, o b being =

V ob 1 — oa 2, then i.p = oh = o b x sec. aog, and hence

oh = op = fori + l /> 2 = foA z + l p z , which gives a point

H in the curve. And the curve thus constructed gives the

very same as the fig. p. 35, formed on the principles of prop.

6, as might be expected.

Examples of other curves, besides the circle, might be

here taken, but the above case may suffice, as none of them

are of a nature to be suitable for, or to hold good, in the

construction of arches, at least for the ordinary purpose of

bridges. Because, that in such arches, the parts do not en¬

deavour to slide down in the oblique direction of the joints,

both on account of the roughness or friction there, and

because, when the parts are cemented together by the mor-

ter, or keyed together by pieces within side, the weights then

all act perpendicular to the horizon, being each fixed to the

other parts of the arch, after the manner supposed in the

9th and 10th propositions; and according to the examples

to the latter of these, it will therefore be expedient to make

such calculations as may occur in cases of real practice.

PROP. VIII.

When a curve is kept in equilibria, in a vertical position, by

loads or weights bearing on every point of it: then the load or

vertical pressure on every point, is directly proportional to the

product of the curvature at that point, and the square of the

secant of the elevation above the horizon of the tangent to the

curve at the same point, the radius being 1. That is, the load

or vertical pressure on any point c, is directly as the cur¬

vature at c, and as the square of the secant of the angle ben,

made by the tangent be and the horizontal line cn.
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This property will be de¬
duced as a corollary from the
properties in the 2d and 3d
propositions, according to the
idea mentioned in the conclu¬
sion of the scholium there, by
conceiving the bars or lines kept in equilibrio to become inde¬
finitely small; for, by this means, those bars will form a con¬
tinued curve line, after the manner of the arch stones in a
bridge, constituting an arch of equilibration, by weights
pressing vertically on every small or elementary part of
the arch.

Now the consequence of the above idea, namely, of the
bars becoming very small, and forming a continued curve,
is, that the angle ben becomes the angle of contact of the
curve and tangent, and the angles /icH, dch become equal to
each other; consequently, the vertical load on the point c,
which, in the 3d corol. prop. 3, was proportional to the sin.
£cd x sec. ben x sec. dch, will be here proportional to the

sin. ben x sec\ ben, or as the angle bcD X sec 1. bcu, since
a small angle (ben) has the same proportion as its sine. But
the angle of contact ben, in any curve, is the measure of the
curvature there ; therefore, lastly, the vertical load or pres¬
sure, at any point c, in the curve of equilibration, is propor¬
tional to the curvature multiplied by the sec 1, of ben ; that
is, proportional to the curvature at that point, and also to the
square of the secant of the elevation of the curve or tangent
above the horizon.

Cord .—Because the curvature at any point in a curve, is
reciprocally proportional to the radius of curvature at that
point; it follows, therefore, that the vertical load or weight

S0c 2.
on any point c, is as---, where r denotes the radius

of curvature at the point c ; that is, directly proportional to
the square of the secant of elevation, and inversely propor¬
tional to the radius of curvature to the same point.
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PROP. IX.

When an upright wall, bounded by a curve beneath, is kept

in equilibria by the mutual weight and pressure of its parts and

materials ; then the height of the wall above every point of the

curve, is directly proportional to the cube of the secant of eleva¬

tion of the tangent to the curve there, and also directly propor¬

tional to the curvature at the same point, or else, which is the

same thing, inversely proportional to the radius of curvature
there.

By the last proposition, the

load or pressure on every ele¬

mentary or small portion,

cc, of the curve, is pro¬
sec 2. ben

portional to --;-. Now

this load oh every such small

equal part of the arch, as cc, is a mass of solid matter ci ic,

incumbent on that part of the curve, and pressing it verti¬

cally; and which maybe considered as made up of a number

of equal heavy lines standing vertically on it; the number of

which lines may be expressed by the breadth ca of the said

pillar cf of heavy materials: but the breadth ca is =

cc cc 1 , . ,--=-—, or as-—, because the element cc issec. cca sec.ocn sec.ucH

supposed given, or always of the same length, that is, ca is

reciprocally as the secant of the angle of elevation. Hence

then the vertical load, or ci, or-—. is as --— ; con-
7 7 sec. pch' r

sequently the altitude ci of the wall aklm, at the point c, is

sec 3. /;ch , . . _
as - , or as sec 3, ben x curvature there. That is,

b CH

the height of the wall above every part of the arch of equili¬

bration, is directly proportional to the cube of the secant of

the curve’s elevation at that part, also directly proportional
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to the degree of curvature there, or else inversely as the ra¬

dius of curvature at the same part.

Corollary 1.—Hence, if the form of the arch, or the nature

of the inner curve abcdm, be given; then the form or nature

of the outer line kil, bounding the top of the vail, or form¬

ing what is therefore called the extrados, may be found, so

as that the intrados abcdm shall be an arch of equilibration,

or be in equilibrio in all its parts, by the weight or pressure

of the superincumbent wall, l or, since the arch or nature

of the curve is given, by the supposition, the radius of cur¬

vature and position of the tangent, at every point of it, will

be given, and thence also the proportions of the verticals ci,

&c. So that, by assuming one of them, as the middle one

vd for instance, or making it equal to an assigned length, the

rest of the verticals will be found from it, and will be in pro¬

portion as it is greater or less; and then the extrados line

kivl may be drawn through all their, extremities.

Or, on the other hand, if the extrados kivl, or line bound¬

ing the top of the wall, be given; then the nature of the

correspondent curve of equilibration abcdm may be found

out. And the manner of the practical derivation of both

these curves, mutually the one from the other, will be shown

in the following propositions.

Corollary 2.—If the intrados curve abcd should be a circle;

then the radius of curvature will be a constant quantity, and

equal to the semidiameter of that circle; also the angle Z>ch

will be always measured by the arc dc, from the vertex d of

the curve; and then the height ci of the wall, will be every¬

where proportional to the cube of the secant of the arch dc.

Corollary 3.—Hence also it fol¬

lows, that if between the intrados

and extrados curves, an interme¬

diate curve kivl , be drawn through

the middle of the wall, bisecting all

the verticals dv, ci, &c, or indeed
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dividing them in any ratio whatever, so as that it may be

everywhere nv : Di> : : ci : ci; then if acdm bean arch of

equilibration to the wall akvlm, it will be an arch of equili¬
bration to the inner wall aWm also.

Having given the Intrados or So ffit, of a Balanced Arch; to

find the Extrados. That is, having given the nature or form

of an arch; from thence to find the nature of the line forming

the top of the seperincumbent wall, by the pressure of which the

arch is kept in cquilibrio.

The solution of this problem is to be made out generally

from the last proposition and its corollaries, by adopting ge¬

neral values of the lines there employed, which belong to all

curves whatever : or otherwise by making use of the peculiar

values proper to any individual curve, for the solution of

particular cases.

For the general solution, in fig. pa. 41, kvl represents the

extrados, the form of rvhich is required, and abcdm the given

intrados or soffit of the arch, the vertex of which is d, and

dv the height or thickness of the wall there, which is com¬

monly a dimension that is known from the particular circum¬

stances of the case. Now if we make the arch dc = z, its

element cc = k, the absciss dii = x, its element ca = x, the

ordinate ch = y, its element c a =y, the height or thickness

of wall at the vertex dv = a, and the radius of curvature at

any point c = r, that at the vertex d being = r.

Then, because the height ci, at any point c, is as

sec 3, bcu or of cca .
-, by the last proposition, and because the

prop. x.

or asci is as cc = f ca- -f-
I

\t x- + j 2 or {x 1 -\rf]
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(^+/y
j>3 r y 3 r

•where q denotes a certain given or constant quantity, the

value of which may be determined by making the general

expression equal to a or dv, the height at the crown of the
arch.

Corollary !.•—Because, at the vertex of the curve d, the

radius, and the radius of the curvature there being r; there¬

fore the general expression for the height, becomes there

DV = a = —q consequently q 3 jr, which is the general

value of a for all curves whatever, expressed in terms of the

height a at the crown, and r the radius of curvature at the

same point. Hence then, substituting this value of a in¬

stead of it, the general expression or value of ci becomes

z 3 ok (x' l +) z)i tfR
vx — = —-— x —.
y 3 r y l r

Carol. 2.—Because, in all curves that are referred to an

axis, the general value of the radius of curvature r, is =
z 3

. therefore, by substituting this value for r in the

last expression, the general value of the height ci then be-

constant.

For, as either x or y may be supposed to flow uniformly,

and when, consequently, either of their second fluxions may

be taken equal to nothing, which will cause one of the terms

in the numerator of the above value of ci to vanish ; there¬

fore, by striking out either of those terms, and then extermi¬

nating either of the unknown quantities by means of the

angle of elevation is nothing, or its secant — = — = 1 the

yx — xy
comes —-— x hr

y 3

yx — xj

y 3
X Q when wis

equation to the curve, the particular value of the height ci
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will be obtained: as is done in tbe following examples, ex¬

may suit them better, as when the radius of curvature is a

known quantity, &c.

Making a — dk, r = aq = --
qd the radius of the circle, which is also equal to the radius

of curvature throughout, or r = n; also x zz dp, and y —

and — the cube of the secant of elevation at c, which is

or, as pq 3 : Da 3 or cq 3 : : dk : ci.

Carol. 1.—This expression for the value of ci, affords a

very simple mode of calculation for the case of a circular

arch ; viz, to the constant logarithm of the height a, add

triple the logarithm secant of the elevation, or of the arc dc ;

then the natural number answering to the sum will be the

value of the height ci, at every point c.

cept in some certain cases, where moi'e peculiar methods

example 1.

To find the Extrados of a Circular Arch.

That is, acdm being a cir¬

cular arc, of which aq or
qd is the semidiameter, q the

centre, and d the vertex of the

given circular arch ; also k the

vertex of the extrados kig, and

the other lines as in the figure.

R V
pc = ri, and s — the arch dc. Then, because — = —= 1,

cq 3 or Da-
; therefore the general value of ci, incorol. 1,

becomes ci = r — y
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Corol. 2 .— It gives also a very simple construction by scale

and compasses, which is as follows:—Join qc ; draw p f per¬

pendicular to qc, and fg perpendicular to qp ; then shall

ag : QC : : qp 3 : qc 3 ; because, by similar triangles, q g :

o f :: af : qp and : : qp : qc, or ag, af, qp, qc are four

terms in continued proportion, in which case the first ag is

to the fourth qc, as qp 3 to qc 3, the cube of the third to the

cube of the fourth. Hence, if ci be taken a fourth propor¬

tional to ag, qc, dk, it will be the length of the vertical line

sought. And this fourth proportional will be easily deter¬

mined in the following manner: viz, Join eg, and in the

vertical line ic downward take c/i = dk, and draw hi pa¬

rallel to eg, so shall ci be equal to ci the fourth proportional

to ag, qc, dk, or to qp s , qc 3, dk, as required.

Corol. 3.—The extrados line in this figure is accurately

drawn according to the above construction and calculation,

when the thickness dk at the crown is the exact loth part of

the span am. It falls more and more below the horizontal

line, from the crown all the way till the arch be between 30

and 40 degrees, where it takes a contrary flexure, tending

upwards, passing the point i very obliquely, and thence rising

very rapidly to an unlimited height, in an infinite curve, to

which the vertical line ag is an asymptote; a circumstance

which must always be the case with every curve, which, like
ac, springs perpendicularly from the horizontal line aqm.

This curve cuts the horizontal line nearly over the point

of 50 degrees. If dk were taken greater than the 15th part

of am, all the other vertical lines ci would be greater in the

same proportion, and the curve kig would cut the horizontal

line drawn through k in some point still nearer to k ; but

the reverse, or farther off, if dk were taken less than the 15th

part. Hence it appears, that a circular arch cannot be put

in equilibrio by building on it up to a horizontal line, what¬

ever its span may be, or whatever be the thickness at the

crown. And consequently it may generally be inferred, that
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the circle is not a curve well suited to the purposes of a

bridge which requires an outline quite horizontal, but may

answer tolerably well when that line bends a little down¬

wards, from the crown toward the extremities; and then a

great variety of proportions between the thickness at the

crown and the span of the arch might be assigned, which

would put the circular arch in equilibrio, nearly.

Now these cases^viil happen in general when ku vanishes,

or is of no length, and then ci must be equal to pk, or nearly

so ; with which general condition man}’ particular cases may

be found to agree nearly. But it may be proper here first

to make out a general rule for such cases, which may be done

in the following manner:

B v the premises, the general
value of ci being dk x sec 3.
DC, or as 1 : sec 3 dc :: dk :
ci; then, by taking ci = pk,
in order to cause the outer
curve ki to cross the horizon¬
tal line ki at the point i, that
proportion becomes

1 : sec 3 dc : : dk : pk or dk -f- dp,
DP

or sec 3 dc — 1 : l :: dp : dk = —--, the radius being 1.sec 3 dc — 1 °

Now, by taking the arch dc of various magnitudes, from

da or 90°, to o or nothing at d, the several thicknesses dk,

at the crown, will be found by this theorem, corresponding

to the several heights dp, or span cc, as here following, so as

to make? cdc a balanced arch very nearly. Thus,

1st. If dc be taken = da or 90° : then its height is dq = r,

its span am == 2r, and its secant is infinite; consequently
DU ,

dk = Yiifi n~ = o. 1 hat is, the thickness at the crown comes

out equal to nothing in this extreme case.

2d. If dc be taken = 75°: then its height dp = ‘74118^

the span cc = 1-93135?’, and the sec. DC = 3-8637 ; t;here-
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i

h

DP CC

—T- = -01308?’ =-. That is, the thick-
sec 3. — 1 148

ness at the crown would be the 148th part of the span, being

also much too small for common practice.

3d. If dc be taken = 60°: then its height dp = •£?’, the

span cc = r</ 3, the sec. dc = 2; therefore dic

cc cc

dp

t- dp tV’ Hv/s

cc
- —- nearly.

24-2487 24£ J

is, the thickness at the crown would be rather less than the

24th part of the span: which is still too small in ordinary

bridges.

4. If dc be taken r: 54°: then its height dp = -4122?’, the

span cc = 1-618?’, and the sec. dc = 1 *7013 ; therefore
dp _ cc

dk = ■
= -10504?’ = That is, the thicknesssec 3.-I 15-41

at the crown would be between the 15th and 16th part of the

span ; which is nearly the proportion allowed in common

bridges.

5. If dc be taken = 45°: then its height dp = r — -?-?'y''2,

the span cc = ?W 2, the sec. dc = ^2 ; therefore dk =
DP

1-W2 r cc cc

8’8284sec 3. — 1 2\/ 2—1 .2+3^2 64 2^2

•|cc nearly. That is, the thickness at the crown would be

more than the 9th part of the span : which in common cases
is too much.

6. If dc be taken =30°: then its height dp
•i?V 3,

the span cc = r, the sec. dc
\/ 3 ’

therefore dk =

DP 3 6^/3 - 9 6\/3
sec 3. — 1 8

3 V3
- 1 16 — 6^3 16 — 6\/ 3

cc :

■icc nearly. That is, the thickness at the crown would then

be almost the 4th part of the span.

7. If dc be taken = 15° i then its height dp = '03407?’,

I
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the span cc = -Slier, and the sec. dc = T0353 ; therefore
, DP DP
dk = —;-- = —- = 9dp = -‘Sr z; icc nearly, or ± or

see 3. — 1 *11 7 J T

the span.

From all which it appears, that a whole arch cdc of about

108 or 110 degrees, is the part of the circle which may be

used for most bridges with the least impropriety, the thick¬

ness at the crown being nearly the 16th part of the span*

with a horizontal straight line at top.

EXAMPLE 2 .

To determine the Extrados of an Elliptical Arch of Equi¬
libration.

Suppose the curve in this

figure to be a semiellipse,

with either the longer or

shorter axe horizontal: put¬

ting h to denote the horizon¬

tal semiaxe AQ, and r the

vertical one dq, also x = dp,

j/ = pc, and a = dk, as usual.

Then, by the nature of the ellipse, f : hi: s/2rx — .vx
h hi r — x

: y : therefore y — — ^2rx — .tx, and y — — x ,,
J o r ’ J r f(2 r—xx)*

alsoj zr
— hrx 1

V (2 rx — xx)
by making x constant. Hence the

— xy
general value of ci, viz, — x a, becomes

rrP a

y‘

r 4a

x

Idx 1
(2rx—xx)x

(r — x) 1 ~h %(r—x) r

(2rx — xx)} £

But at the vertex of the

r Q

curve d, where a - is — o, this expression becomes only -r^r,

■which must be = dk or a j therefore the value of a is xz
ahh

which being substituted for it in the above general value

VOL. I.
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, , . . ar 3 DK x Da 3 ... . ,
of ci, this becomes ci = --- =-, which is the

(/•—pq 3

very same expression as the value of ci in the case of the

circle in the former example, and which belongs equally to

the ellipse in both positions, that is, both with the longer axe

vertical, and with the shorter one vertical, as it is in the

figure to this example.

Hence it appears, that the flat ellipse is more nearly ba¬

lanced by a straight horizontal back or wall at top, than the

circle is; hut the circle more nearly than the sharp ellipse :

the want of balance being least in the flat ellipse, but most in

the sharp one, and in the circle a medium between the two.

EXAMPLE 3 .

To determine the Extrados of a Cycloidal Arch of Equili¬
bration.

Let dzq be the circle

from which the cycloid

acd is generated ; and
the other lines as before.

Put a = dk, x = DP,

and y = cp — ir, as

usual; also put r = Da

the diameter of the circle, and z ~ the circular arc dz.

Then, by the nature of the cycloid, cz is always equal to dz

= z ; and, by the nature of the circle, pz is = v'rx—xx ;

therefore pc or 3/ ( = cz-|-pz) is = z \/ rx — xx. Hencey

= * + x x ; but k is =
U'x

f(rx — xx)

ture of the circle ; therefore y is

r — x-. — rx 1

^/(rx — xx)
r—x

by the na-

y. x — x

; then y =

V (rx — xx)

,makingxconstant. Hence

ci is =
— xya

9 x^/ (rx— xx)’

ir a
'■ But at the vertex d, x = 0, and
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ci = — = a ; therefore a = 2 ar ; consequently the general

value of ci is (—— ) z x a = )z X dk ; a formula which

expresses the nature of the curve ki, for the extradosor back

of a cycloidal curve of equilibration ; a curve much resem*

bling that for the circle and ellipse, in the two foregoing ex¬

amples, as evidently appears bv comparing the figures toge¬

ther, each of them being here accurately contracted. But

this last figure, for the cycloid, seems to be rather better

than either of those other two, as the extrados deviates rather

less from a right line, and extends farther along before it

bends upwards ; and besides, the cycloidal arch is not defi¬

cient in either use or gracefulness.

To determine the figure of the Extrados of a Parabolic A rch

of Equilibration.

is, ci is every where equal to kd.

Consequently kr is = dp ; and since ri is = pc, it is

evident that ki is the same parabolic curve with dc, and may

be placed any height above it, always producing an arch of

equilibration.

example 4 .

Putting, as before, a = kd, r zt
dq, h ~ aq, x = dp, and y — pc
= ri. Then, by the nature of the

K

hh ’
A CL

2 rj) _ l2rf

hh’

Then ci a constant quantity r= a ; that
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EXAMPLE 5.

To find the figure of the Extrados for an ITi/perbolic Arch of

ture of the hyperbola, y — — f2rx + xx hence y = —

actly similar to the formula for the circle and ellipse, only

causes the value of ci to become always less and less, as

the point c is taken farther from the vertex n.

In this hyperbolic arch then, it is evident that the extrados

ki continually approaches nearer and nearer to the intrados;

whereas in the circular and elliptic arches, it goes off conti¬

nually farther and farther from it; while in the parabola, the

two curves keep always at the same distance. Observing,

however, that, by the distance between the two curves,

in all these cases, is meant their distance in the vertical

direction.

Equilibration.

Here putting, as before, a ~

KD, r — the serni-transverse, and

h = the horizontal or semi-con¬

jugate axe, also x — dp, and y

K

= pc = ri. Then, by the na- A
k hi

f (2 rxf xx)

r + x
and, by making x constant, 7 =-p

(2 rx + xxf

Therefore ci or
X » A T*l

But in the

vertex d, where x = o, this expression becomes

ra , ahh , ,

— a-, hence a =: ~f~i an “ consequently ci or

h r x
<>’ + ■*)* (

a, which is ex¬

having?- -J- x in the denominator, instead of?’ — x, which
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EXAMPLE 6.

To find the Extrados for a Catenarian Arch of Equilibration.

K

Let a — kd, x — dp, and y — pc = Ri, as before ; also
let c denote the constant tension of the curve at the vertex.

Then, by the nature of the catenary, y is = c x hyp. log. of
C + x + f 2 cx -j- xx

; hence, taking the fluxions, we have> =

c + x
and j' = — cx* x

(‘2cx -f- ,r,r)

constant. Therefore ci, or—x Q, i

, by making k
(2cx + xx)%

— xj . C + X

cc
x Q. But

at the vertex x is = 0, and ci = a = —; consequently q

is ac. This being written for it, there results ci =:

cA-x av . , . . .
- x a — a A- —. And the same formula comes out

c c

for the logarithmic curve. Hence, for the nature of the
' ax c-a

curve ki, we have kr — (a x — ci —)x — — =i —— x x.

Corol. —And hence the abscissa dp, of the inner or soffit

curve, is to the .abscissa kr, of the exterior one, always in

the constant proportion of c to c — a. So that, when a is less

than c, r and the curve ki lie belotv the horizontal line; but
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■when a is greater than c, they lie above it; and when a is

equal to c, kr is always equal to nothing, and KI, or the ex-

t rad os, coincides with the horizontal line. As a diminishes,

the line ki approaches always nearer to nc in all its parts,

till, when a entirely vanishes, or is so small in respect of c as

to be omitted in the expression —x x — kr, the two curves

quite coincide throughout.

Scholium .—As it has been found above, that the extrados

will be a straight horizontal line when a is equal to c, a cal¬

culation may here be instituted to determine, in that case, the

value of c, and consequently of a with respect to x and y, or

a given span and height of an arch of equilibration in that

case. Now the equation to the curve expressed in terms of

c, x, and y, is y X hyp- log. of -
c + x J r \/‘2cx -(- xx

and when x and y are given, the value of c may be found

from this equation, by the method of trial and error. But

as the process would be at best but a tedious one, and per¬

haps the method not easy in this case to be practised by every

person, we may here investigate a series for finding the value

of c from those of x and y in a direct manner. Since then

y — c x hyp.log. of
c + x + \/ 2cx -f- xx

, by taking the

fluxion of thjs equation, we have
c.v idx

i — ~T77, - i- i — ~m~~\ - by writing d for and
^/(2cx-\-xx) */(dx+xxy J b ’

by expanding this expression into a series, it becomes

, . , d x l.?,x' 1.3.5.r 3 .v—lxy— x (1- r -—- t, &c) : and, by
x K ‘2d ~ 2Ad 1 2.4.6d 3 " ’ 3

tailing the fluents, we have y = dx x (1 —
J.a.r 1 l.S.S.r 3

2 .‘id
+

‘2A.ti.ld 1
+ 1.3.5.7.r* „ ,

— &c); hence, dividing by2.4.6,8.9d 4

.Vv:n nave i-
x

d
v/ -; X (1 2.3d

1.3-r 1

+ 2A.5d'

1.3.Sx 1

2A.6.1d>
+
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1.3.5.7t 4 o , , . . . y
.6J.9d* &C) ’ ° r ’ by wntin 5 v for P

1. 3_ 1.3.5
2A.5W’ ~ ZA.e.’lw 5

2.4

IS V zz w

and w for V —, it

2.3a>
+ + 1.3.5.7

2.4.6.8.9W 7
&c.

1 37

Then, by reverting this series, we have w —v -f — — 'gg Q~ i

547 337

5040w s ~ 5600t> 7

storing the original letters, it is (\d zz \xw' zz) c = -£.r

?/ 1 8^ 691T* 2385 Ij: 6

3780

the value of c

+
i ~ r~nCi & c - ^ ence > by squaring, &c, and re-

&c), where a few of
3 453/ 1 ' 3780y 4 453600y‘

the first terms are sufficient to determine

pretty nearly.

Now, for an example in numbers, suppose the height of

the arch to be 40 feet, and its span 100, which are nearly the

dimensions of the middle arch of Blackfriars Bridge at Lon¬

don. Then x == 40, and j/ = 50 ; which being substituted

for them in this series, it gives c — 36’88 feet nearly.

So that, to have made that arch a catenarian one, with a

straight line above, the top of the arch must have been al¬

most of the immense thickness of 37 feet, to have kept it in

equilibrio. But if the height and span be 40 and 100 feet, as

above, and the thickness of the arch at top be assumed equal

to 6 feet, then the extrados will not be a right line, but as it

is drawn in the figure to this example, which figure is accu¬

rately constructed according to these dimensions.

It may be further remarked, that the curves in these-last

three examples, viz, the parabola, hyperbola, and catenary,

are all very improper for the arches of a bridge consisting

of several arches; because it is evident from their figures,

which are all constructed from a scale, that all the building

or filling up of the flanks of the arches will tend to destray

the equilibrium of them. But in a bridge of one single arch,

whose extrados or hack rises pretty much from the spring

to the ton, one of these figures will answer better than any

of the former ones.—Other examples oi known curves might

but those that have been here noticed, seem to
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be the fittest for real practice; and there is a sufficient variety

among them, tp suit the various circumstances of conveuU

ence, strength, and beaut}', that may be desired.

We may rjow proceed to another general problem, which

is the reverse of the last, and is, to determine the figure of

the intrados for any given figure of the extrados, so that the

arch may be in equilibrio in all its parts. This is a more

difficult problem than the former, and the more useful one

also. Here commonly, that the roadway may be of easy and

regular ascent, we are confined to an outline nearly hori¬

zontal, to which the curve of'the. soffit or inner arch must,

he adapted.

PROP. XI.

Having the Extrados givento find the Intrados. That is.,

having given the mature or form of a line, bounding the top of

.a wall above an arch; to determine the figure of the arch, so

that, by the pressure of the superincumbent wall, the whole may

-remain in equilibrio.

Putting a ™ dk the thick¬

ness of the arch at top, x =

•DP the absciss of the required

intrados arch DC, u — kr the

corresponding absciss of the

given extrados Kl, and y = pc

= ri their equal ordinates.

Then, by the last prop, ci is = x q ; but ci is also

evidently equal to a -f x — u\ therefore a + x — u is =

^ X q = x the fluxion of ; where a is a con-f y ' y

stant quantity, as used in the last proposition, and is always

to be determined from the nature or conditions of each par¬

ticular case, commonly indeed by taking the real value of

pt, viz, dk or a at the vertex of the curve.

■Vy — W
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Hence then, by substituting, in this equation, the given

value of u instead of it, as expressed in terms of y, the re¬

sulting equation will then involve only.r and y, together

with their first and second fluxions, besides constant quanti¬

ties. And from it the relation between x and y themselves

may be found, by the application of such methods as may

seem to be best adapted to the particular form of the given

equation to the extrados. In general, a proper series for the.

value of x in terms of y is to be assumed with indeterminate

coefficients ; which series being put into fluxions, striking out

of every term the fluxion of y; and the result put into

fluxions again, striking out from every term of this also the,

fluxion of y ; the last expression drawn into a being equated

to a + x — n, there will be produced an equation, from

which may be found the values of the coefficients of the

terms in the assumed value of x.

Fortunately however, the process is more simple and easy

in the most common and useful cases, than might at first be

expected from this general method, viz, when the extrados

is a straight line, even when it is oblique, and still more when

it is horizontal; two cases to which we shall now proceed to

apply the general method, in the following examples.

RXAMPI.E 1.

To find an Arch of Equilibration when the Extrados is a

straight line, oblique or inclined.

In this case, the extrados will

have a resemblance to the sloping

roof of a house, as in the annexed

figure, and is often used in the

case of gunpowder magazines.

Here employing the notation as

jn the proposition, the general equation there is ci, or ic,
fix-xj X

— a x — H — ft x — -ri —, or = a x -y, supposing x
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a constant quantity. But kr or u is = ty, if t be put to

denote the tangent of the given angle of elevation kir, to

,. iii • • a*radius 1 ; and then tne equation is w = a + x — ty — —.

But the fluxion of the equation a? = a + x — ty, is™ =

x — ty, and the second fluxion is w =: x ; therefore the gene-

. , gu> , , . aw .
ral cauation becomes w — — ; and lienee w-u’ rr , the

x y y

fluent of which <hves ta 1 = : but at D the value of w is
_>

— a, and av = o, because the curve at d is parallel to ki ?
Q.-'v~

tberefore the correct fluent is w 1— a 1 = —

Q 1'j nv»
y- ~ —:-r, or y — ——

TV Ur \/ TV

/a

Hence then

the correct fluent of which

W + Vw 1 — a~
gives y = y/a x hyp. log. of-

Now, when the vertical line ci is at the position al, then

w — ci becomes al = the given quantity c suppose, and y

= ao zz h, in which case the last equation becomes h —

y/a x hyp. log. of —— ^ '-; hence it is found, that

the value of the constant quantity y/ a is -
.c + V<: z -a z

h.l.of
a

which being substituted for it in the above general value of

y, that value becomes ?/ = h x

log. of
,W + y/tel 1

,.c + y/c 1 - a*
; from

log. of

which equation the value of the ordinate cp may always be

found, to every given value of the vertical ci.

But if, on the other hand, pc be given, to find ci, which

will be the more convenient way, it may be found in the fol¬

lowing manner: Put a = the log. of a , and e = x log. of
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c + Vc 2 — a 1 ,,, . .
---; then the above equation gives cy+ A = co

log, of ( w + s /w 2 — a 1] ; again, put n — the number whose

log. is cy 4 - a ; then n = w + Vw z — a *; and hence w =
a z -f n 1

2n ~ CI '

This example is more peculiarly adapted to the use of
magazines for gunpowder, which are usually made in the
manner represented in the figure above, that is in regard to
their roof, for the inner curve itself has commonly been made
a semicircle. But it is a constant observation, that after the
centering of semicircular arches is struck, they settle at the
crown, and rise up at the flanks, even with a straight hori¬
zontal extrados, and still much more so in powder maga¬
zines, where the outside at top is formed, like the roof of a
house, by two inclined planes joining in an angle, or ridge,
over the top of the arch, to give a proper descent to the rain;
which effects are exactly what might be expected from a
contemplation of the true theory of arches. Now this shrink¬
ing of the arches must be attended with very bad conse¬
quences, by breaking the texture of the cement, after it has
in some degree been dried, and also by opening the joints of
the vousoirs at one end ; consequently the application of the
formula above investigated must be accompanied with bene¬
ficial effects. It may be useful therefore to give here an ex¬
ample in numbers in a real case of that nature. If the fore¬
going figure then represent a transverse vertical section of a
balanced arch in all its parts, in which the span am is 20
feet, the pitch or height Da 10 feet, the thickness dk at the
crown 7 feet, and the angle of the ridge lkn 112° 37', or the
half of it lkd = 56° the complement of which, or the
elevation kir, is 33° 4l'f, the tangent of which is = which
will therefore be the value of t in the investigation above.
The values of the other letters will be as follows, viz, dk= a

= 7; Aa = h = 10; Da = r = 10; AU = c = = lO-f.;
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1 c c 1 —eft
: Jog. of 7 = ’8450980 ; c= *y~ x l°g* °f—- = -rs

Jog. of 3-- — ,-Vlog. of 2-56207 = -0408591 ; cy +21

A = -040859 \y + -8450980 = tlie Jog. of n. From tlie gene-
a 7 -f- n7

ral equation then, viz, ci = w = —f n ~-> b y assuming y

successively equal to 1, 2, 3, 4, &c,
and thence finding the correspond¬
ing values of cy + a or -Q408591
+ -8450980, and to these, as com¬
mon logs,tailing out the correspond¬
ing natural numbers, or values of n;
then tlie above theorem will give
the several values of w or ci, as
they are here arranged in the an¬
nexed table, from which the figure
of the curve is to be constructed,
by finding so many points in it.

Val. of y
or cp.

Val. of w
or ci

1 7-0310
2 7-1243
3 7-2806
4 7-5015
5 7-7838
6 8-1452
7 8-5737
8 9-0781
9 9-6628

10 10-3333

EXAMPLE 2.

To find, an Arch of Equilibration whose Extrados shall be a
Horizontal line.

The process for this case
differs in nothing from that in
the former example, but in
substituting the horizontal line
of extrados ki, instead of the
oblique one, by which the
angle dki becomes a right
angle, therefore the angle kir, in the former example, va¬
nishes, and consequently its tangent also, that is, the value
of i, in the last example, becomes nothing in this: all the
other letters and the formula being the very same.
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For an example therefore in numbers, let us suppose the

span of the arch to be, 100 feet, the pitch or height 40 feet,

and thickness at the crown 6 feet, which are nearly the

dimensions of the centre arch in Blaekfriars bridge-: then

the values of the several letters will be as follows, viz, ao =

A 50; dq = r= 40; dk = a = 6; al — c — 46. He new

the hyp. log. or-= hyp. log. of---& 6

= hyp. log. of 15*26784 = 2 -7257487; by which dividing h .or

50, the quotient is 18*343584. So that the ordinate y will be

constantly, in that ease, equal to 18*343584 X hyp, log-, of

^/~w* ^t» +
Also- •05451497 is = c, and a —

a 18*343584

hyp. log. of 6 = 1*7917594; therefore n is = the number whose

hyp. log. is cy -f- A or *05451497j/-f-1*7917594. Hence, by-

assuming several values of the letter?/, which is = cp or is.,

the corresponding values of n will be found as above, and

then those of w or ci from the final general equation w ~

ar + ii z 3 6 + „ . . z * i - o •
-= --— = 3 -4- TV n ■ And in this maimer were

2a 12

calculated the numbers in the following table; from which

the curve being constructed, it will be as appears in the

figure to the example.

And thus we have an arch in equilibrium in all its parts,

and its top a straight line, as is generally required in most

bridges; or at least they are so near a horizontal line, that
their difference from it will cause little or no sensible ill

consequence. It is also both of a graceful figure, and of a

convenient form for the passage through it. bio that ,r,o

reasonable objection can be oilered against its adoption in

works of consequence, on account of its mechanical excel¬

lency.
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The Table for Constructing the Curve in this Example.

Value
of K 1

Value
uf I C

Value
of KI

V alue
of r c

Value
uf K I

Value
of I c

Value
of KI

V a 1u (
of I C

i ValiiK
of KI

Value
□f 1C

0 6-000 15 8120 24 1 1*91 1 .33 18-627 42 29-919
2 6-035 16 8-430 ' 25 12-4S9 34 19-617 43 31*563
4 6 144- 17 8-766 26 13-106 35 •20*665 44 33-299
6 6'324 18 9-168 27 13-761 36 21-774 45 35*135
8 6-580 19 9-517 28 14-457 37 22-948 46 37 075

10 6-914 20 9-9.34 29 15-196 38 24190 47 39-126
12 7-330 21 10-381 30 15-980 39 25-505 48 41*293
13 7-571 22 10-85S ,31 16-811 40 26-894 49 43-581
u 7-834! 23 11-368 32 17-693 41 28-364 50 46-000

The above numbers may either be feet, or any other

lengths, of which Da is 40 and qa is 50. But when Da is to

qa in anv other proportion than that of 4 to 5, or when dk is

not to d« as 6 to 40 or 3 to 20; then the above numbers will

not answer; but others must be found by the same rule, to

construct the curve by. In the beginning of the table, as

far as 12, the value of ki is made to differ by 2, because the

value of ci in that part increases so very slowly. After*

wards they differ by units or 1.

Other examples of given extrados might be taken; but as

there can scarcely ever be any real occasion for them,- and

as the trouble of calculation would be, in most cases, very

great, they are omitted.

As the theory for arch vaults, before laid down, will so

easily apply to the arches for domes or cupolas also, a pro¬

position or two may be here added for that purpose, as
follows.

PROP. XII.

When a regular Concave Surface Dome, or Vault, formed

by the rotation of a curve turned about its axis, is kept in equi¬

libria by the pressure of a solid wall built on every part of it ;

then the Height of the wall over any part,is directly proportional

to the cube of the secant of elevation there, and inversely pro¬

portional to the radius of curvature, and to the diameter or

<width of the dome at the same part.
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That is, vi being the form of the

exterior surface of a balanced shell,

the interior surface of which is

formed by the rotation of the curve
dca about its axis dh ; the eleva¬

tion of anv part c being the angle

bcH, and ch the ordinate or semi-

diameter of the dome at the point c, also r the radius of

curvature to the same point: then the height or vertical

thickness of the shell over the point c, or ci, is proportional
sec 3 be hto-
r x ch

Let acdcb be a small part of the inner surface, like a
curved sector or gore, dca and Den being two near positions

of the generating curve. Noiv the vertical load on any

part c of a balanced arch, in a shell or dome, in the present

case, is a solid pillar, ci, whose height is ct, its breadth c a,

and thickness ce, and consequently is = ci x ca x c c. But
ch 1 , . . . ,

ca is as —t or as- --; and ce is always in the same
co sec. o oh

proportion as ch ; therefore the pillar ci, or ci x ca x ce
CI X CH

is as -——--; which load, by the 8th prop, is also propor-S6C> uCH

, sec 1, be II , - ci x ch . sec 1, ben
tional to-: therefore - -— is as-; conse-

r sec. och r

^CH
quently the height ci is as ——--. That is, the vertical

height of the wall over every part of a balanced shell, or

dome, or vault, is directly as the cube of the secant of the

curve’s elevation at that part, and inversely as the radius of

curvature, and also inversely as the width of the dome at

the same place.

And here may be also understood several corollaries and

observations exactly similar to those to the 3d and the 9th

propositions, and which therefore need not be repeated in

this place.
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PROP. XIII.

Having given the form of the Inner Sur face of a balanced

Shell or Dome; to determine that of the Exterior or Outer

Surface. That is, having given the nature or form of an

inner shell; thence to find the nature of the outer or bounding

surface of the superincumbent wall, by the pressure of which

the shell is kept in equilibria.

By reasoning here exactly

as in the 10th proposition,

it will be found that the ge¬

neral value of the height

ci of the wall, will be pro¬

portional to the following

forms or quantities, viz,

. , sec 3. Aci-i z 3 fv 2 +i 2)^
ci is either as -, or as-or as - —, or

r x ch ryy ry f

as - ’-, or as-- when x is considered as invariable,
ryy yf

X
or as --when j is .invariable: in which the letters have

yf-

the usual values, namely, .v = dh the absciss, y — ch the

ordinate, and z = dc the curve, also r the radius of curva¬

ture at the point c. Or the general value of ci will be equal

to any of these forms multiplied by a certain constant quan¬

tity g, the particular value of which is always to be deter¬

mined by putting the general value of ci equal to the given

thickness of the shell, either at the crown, or at some other

particular place, where that value may happen to be known
or o-iven.O

Carol. —From this, and the foregoing prop, we may infer

this general observation, namely, that no curve can produce

the figure of a true or exact balanced dome or cupola, unless
that curve be of such a nature as to have its radius of curva-
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ture at the vertex of an infinite length, or the curvature at

the vertex nothing; which is the case with some curves; or

unless the thickness at the crown be infinite. For, at the

vertex, the angle of elevation bcH is nothing, and the secant

= 1 ; the ordinate ch is there nothing also; therefore the

r x o o

be a finite quantity.

Or, if dv be finite, as suppose = A; then a —

the radius of curvature at the vertex must be infinite when

the height there is finite or given; or, on the other hand,

the height or pressure at the vertex must be infinite, when

the radius of curvature there is a finite or given quantity, to

have the shell truly balanced. Of this nature there are se¬

veral curves, of the parabolic kind in particular, of a form

both convenient and graceful, such as the cubical parabola

in the following example.

ordinate, and a the parameter,

or a given quantity; then the equation to the curve is

• 1}CH
general expression, ci — —— -•, becomes, at the vertex,

r x ch

= infinite, that is dv must be infinite, if r

r x o

or r --— = — = infinite, when a is finite. That is,
ax o o

EXAMPLE.

Taking, for an example, the

curve dc of the cubical parabola,
so called because its abscisses

are proportional to the cubes of

their ordinates. Thus, putting affIL|H‘i ft <

x dh the absciss, y = ch the illil/ °

ax = y %. Hence, taking the fluxions, we obtain x =

and x — ——, vrh cn y is considered as invariable Thi*
a

VOL. I. F
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value of x being substituted for it in the general value of the

any given or constant quantity. Consequently the outer

curve is the same as the inner, but placed in a higher posi¬

tion, as they appear in the figure to this example, where

the curves are accurately constructed to a particular scale,

when the greatest width am is SO feet, and the height no. is
64 feet.

The foregoing principle for balancing dome vaults, it

must be understood, is quite independent of the aid it re¬

ceives from the circular or other form of its contour, in which

indeed consists- its great strength and stability. For, from

this shape it happens, that the inside or outer one, in the

vertical section, may take any form whatever, either convex

outwards, as is usual in rotund domes, or a straight side, as

in the cone of tile kilns or the pyramidal spire, or even con¬

cave outwards and convex inwards. For, by making all the

coursing joints of masonry, quite around, not flat or hori¬

zontal, but everywhere perpendicular to the face, and all

the vertical joints tending or pointing to the axis, all the

stones or bricks, &c, will act as wedges in a round curb, and

cannot possibly come down, or fall inwards, unless the com¬

ponent parts could be crushed to powder, or the bottom

circular course burst outwards. To prevent this from hap¬

pening, a strong hoop of iron may be passed round the bot¬

tom, and in other parts also, in works of consequence, which

effectually secures the fabric from bursting open, or flying

outwards, while the round form, like a curb, as securely

prevents it from falling inwards. Hence too it happens,

that considerable openings may be cut in the sides, or it may

be left open, as if incomplete, at top, and over the opening

may be erected any other figure, whether lantern or spire,

&c, either for use or ornament.

height ci, viz

X
this becomes ci

ay y- a ’
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GENERAL SCHOLIUM.

In the foregoing propositions have been delivered the

chief variety of ways for constructing the arches of bridges,

so as they may he in equilibrio or balanced in themselves.

There are three of these different methods; first, that which

is derived from the consideration of the equilibrium produced

by the mutual thrusts, weights and pressures of the arch

stones, supposing them prevented from sliding on each other

at the oblique joints, either by their roughness and friction,

or by the cement, or stone locks, or iron bars let into every

adjacent pair of stones ; which give the arch the effect of

one compacted frame, pressed on vertically by the weight

of the superincumbent load of wall above it: which seems

to be the true and genuine way of considering the action of
that load on the arch.

The second method, is that in which the balanced arch is

computed on the supposition that the arch stones have their

butting sides perfectly smooth, and at free liberty to slide on

each other. A method which is but little insisted on, as it

is founded on a supposition which is neither in nature nor

art, and which can never take place in any real construction
of an arch.

The third method, is that which has fer its principle the

catenarian or festoon arch, formed by the suspension of a

slack chain or cord, by its two ends, and afterwards invert¬

ed. This idea it seems was first proposed by Dr. Hooke,

near the latter part of the 17th century, when the Newtonian

mathematics prepared the way to true mechanical science.

This is a strictly just and useful principle, and may be most

easily extended to every case that can happen in practice.

At first indeed the idea had nothing more in view than the

balancing of the single or thin arch, formed by the voussoirs

only, as the catenarian curve, formed by a simple chain or

cord, can aim at nothing further than the balancing of that

simple string of arch stones, without any other wall to fill
F 2
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up the flanks, &c. This principle was also neatly treated of

by Delahirc, in prop. 123, 124, 125 of his Traite de Meca-

nique, published in 1695. But the same principle has been

lately acted on, and extended much further, by professor

Ilobison of Edinburgh, namely, bv making thus a festoon

arch balancing, not only the simple string of voussoirs, but

also the whole load of the superincumbent wall, of any pro¬

posed form whatever. This method, so easy in its practical

operation, depends on, and is easily deduced from the first,

or that which balances the arch by the mutual thrusts and

pressures of the parts; by showing that these forces, of mu¬

tual pressure of the parts, are exactly equal and opposite to

those by which they pull or draw each other in the case of

suspension.

It is true that the equilibrium which any theory establishes,

is of so delicate a nature, by supposing the parts to touch

only in single points, that it may be called a tottering equi¬

librium, since any other weight or force added at any part

would press the arch out of its true balanced form, and, by

shifting the points of contact of the parts, bring the whole

down to the ground, if it were not that the arch stones have

some considerable length, by which a stability is ensured,

as the altered figure will find new points of contact, where

the action of the parts will principally bear, and through all

which points a new curve line may be conceived to pass, as

the catenary or festoon balanced arch. And hence it follows,

that the longer the butting joints or arch stones are, the

more stable and secure the whole fabric will be; since this

circumstance will allow of the more change either in the

figure of the arch, or the true catenarian points of bearing

or thrust, and yet have a competent substance of solid stone

to sustain the great force of such actions. It is therefore of

the greatest importance to have the arch stones made as

long as may lie, consistent with economy, and the other

circumstances of the fabric. And this was the great use of

the ribs that were employed in the old English architecture,

the great projections of which augmented considerably the
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stiffness of the whole, and enabled the architects to malic

use of comparatively very small stones in the other parts of
the work. This contrivance we find has been used in con¬

structing roofs, as well as in bridges; the few old remaining

ones of these we see have been constructed and strengthened

by these ribs of long and large stones. It would therefore

be perhaps the safest and firmest way, to give the whole

masonry of the wall, over the arch stones, the same position

of joints as these stones themselves have, namely, not in

horizontal courses, but everywhere the joints in the direc¬

tion perpendicular to the curve of the arch, quite up to the

top or road way; as we see indeed has been practised in

the face of the masonry at Westminster bridge. For, by

this means, the whole has the effect of arch stones, consi¬

dered as extended the whole length, from the soffit of the

arch, all the distance up to the road way: thus ensuring a

strength and safety so complete, as to render even consider¬

able deviations from the theory of a balanced arch of no
material bad effect whatever.

SECTION III.

OF THE PIERS.

When an arch is supposed to stand alone, and well ba¬

lanced, it is necessary that its piers or abutments should be

at least sufficiently firm and massive to resist completely the

shoot, drift, or horizontal push of the arch. For should the

pier yield in the least to this drift, and be pushed aside, the

arch must infallibly fall down. It is therefore essential that

everv arch should have its abutments properly adapted to

resist effectually its shoot. And the same precaution ought

also to be employed in a string or series of arches, such as
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an arcade, or a long bridge composed of several openings: for

though, in these cases, the arches may be supposed to sus¬

tain mutually each other’s thrust, while they are all standing,

and to require only a slender pier between every adjacent

pair of arches, to serve as a thin plane between their mutual

pushes, like the ridge board between the butting ends of the

rafters in the roof of a house; yet provision should be made

against any possible accident that may' happen to any one of

the arches in the string, so as that any of them may be sup¬

posed cut open, or to fall down, and yet not affect the ad¬

jacent ones, but leave them standing firm and independent,

sustained by their own piers alone. For otherwise, should

the arches be made in a string as it were, all dependent on

each other for support, then on an accident befalling any

one arch, the entire series of arches must follow it, and the-
whole fabric come down.

Prudent architects therefore take care to employ various

means of constructing their piers to be, as they expect,

sufficiently stable and firm, to sustain the shoot of the arches;

without however being always certain of the just and ade¬

quate effect. For this reason it sometimes happens, that

their piers are made too slender for perfect safety, and

sometimes indeed, erring on the other hand, they are made

unnecessarily thick and massive; a mistake which, to say

nothing of the ungraceful appearance, both enhances the

expence, and also impedes the free and easy passage of the

water and navigation, by occupying too much of the breadth

of the river, by such loads of solid masonry. It is therefore

intended, in this section, to give rules and examples for

computing nearly the proper thickness and weight of a pier,

so as to be an exact balance to the shoot of the arch; that

by then giving it a very little more thickness in practice, a

security is provided against any accidental arid extraneous
effort.

But this equilibrium is not easily or certainly to be effected :

it is by all authors attempted, though not always justly, by

determining the thickness of the piers such, that the resist-
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ance of its weight to being overset, may be at least equal to

the force of tbesboot or drift of the arch against it. This prin¬

ciple is obvious enough; hut then all authors have not agreed

in the method of estimating the value of this last force in

particular. Some hare determined this point on supposition

that the wedges or arch stones arc perfectly smooth and un¬

connected with each other; while others have supposed

■them so firmly connected, as to form the arch into a solid

mass, acting like one rigid body only. It is true, and it has

been proved in the beginning of this work, that in an arch

of equilibration, formed of parts properly disposed, whether

of wedges, or of vertical pieces, the horizontal push or

shoot is constantly the same quantity in every part of the

arch; being to tbe weight of the arch above that part, as

radius to the tangent of the elevation of that part of the arch
above the horizontal line: from which circumstance some

persons have imagined that, by computing the shoot or drift

for any small given part, as at the key stone for instance,

■which can easily be done, that will be a sufficient measure

or value of the whole; then by applying it at some particu¬

lar part of the pier, as a force or action tending to overturn

it, an equilibrium is established between them. But this

method will not do ; because it is founded on the supposition

that the constituent parts of the arch are perfectly polished,

and at liberty to slide freely on each other. Whereas, on

the contrary, the parts that compose the arch are completely

hindered from sliditig on each other, partly by their rough¬

ness and friction, and partly by the cement employed be¬

tween them, and still more by the ties and fastenings placed

within, to bind them together. By these means it happens,

that all the parts are firmly compacted and united, so as to

form the whole arch in some measure, into one rigid and

solid mass; and besides that many of the voussoirs, in the

lower parts of the arch, are built and bonded into the very

body of the pier itself, and forming a part of its very mass.

The same principle also, of the constant and determinate

magnitude of the horizontal push, is founded on the suppo.
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sition, that the arch is a true and real arch of equilibration;

which perhaps can never be justly said to be the case. Be¬

sides, if it were such an arch, and the quantity of the con¬

stant horizontal push duly found, it would still be doubtful

at what point of the pier to apply it, in making the calcula¬

tion of its elfect, on account of the circumstance that the

arch has a bearing and oblique thrust, not against one point

only, but in a different degree at all the points in that part

of the pier extending from the impost, or foot of the arch,

upward to the very top or roadway over the bridge.

On all these accounts then, and perhaps others, not hei'e

adverted to, it would seem that there is not, and perhaps

cannot be, any true and perfect mathematical calculation

made, of the exact balance between the push of an arch ami

the stability of the piers. Hence it has happened that various

methods have been employed for this purpose, by different

authors, with more or less show of reason or grounds of

propriety: and hence also many practical engineers, neg¬

lecting all such calculations as unsatisfactory, have depended

on practice and experience onty, taking care, as they think,

to err on the safe side, by making the piers much too mas¬

sive, rather than risk the hazard of a failure by the chance

of the contrary case. In this uncertainty, after several trials

and examinations, two of the most promising, among the va¬

rious ways, of solving this problem, have been selected and

delivered in the following prop, as affording probably a near

approach to a true conclusion.

prop. xiv.

To find the thickness of the piers of an arch, necessary to

keep the arch in equilibria, or to resist its drift or shoot , inde¬

pendent of any other arches.

First Solution. —Let bdec be the half arch, and efgh

the pier necessary to balance and support it, considered

as moveable about the extreme point g of the base.
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■F.KH
Through the centre of gra¬

vity i, of the arch bdec,

let ik be drawn perp. to

the span aokc. Now the

sem iarch b dec is su pported

against the part of the pier
EC, but chiefly on the im¬

post or lowest point c,

which sustains its weight,

and by the horizontal
thrust of the other semi¬

arch aldb, acting against it in the line of meeting ED.

If both of these pressures be taken at their lowest points b, c,

the arch may be considered as supported at these two points

after the manner of a solid beam. But -when such a body is

supported in this way, it is well known, from the principles

of mechanics, that the weight of the body downward, is in

proportion to the horizontal push at its foot, as the vertical

line ik is to the horizontal line kc; therefore the weight of

the semiarch bdec, is to its shoot against the pier at c, as
ik is to kc: this force or push therefore will be expressed by
KC
- X a , where a denotes the arch bdec, or its weight or

its area: and if this force be drawn into the length of the
KC CF

lever cf, the product--—- x a will express the efficaciousIK

force tending to overturn the pier, by causing it to tunf
back about the point g, supposing the pier to be firmly
compacted into one mass.

Now, to oppose and balance this force to overset the

pier, arising from the push of the arch, we have the resist¬

ance depending on the weight of the pier itself. This weight

may be supposed to be collected into its middle vertical

Jine mn, or it may be represented by an equal weight p sus¬

pended from its middle point m; p, acting by the lever
mg, and denoting the weight of the pier, or its area ef.fg,
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Therefore the resistance of the pier will be expressed by
EF . FG . ^FG or |EF . FG'.

Then, by making this opposing force of the pier equal to

the efficacious force of the arch, both as expressed above,

that there may be a just balance between them, they will

form an equation, from which will easily be determined the

unknown quantity, or thickness of the pier, so as to produce

the desired equilibrium. And, by adding a little more to it,

for better security, the stability is considered as sufficiently

obtained. Thus then, having made the equation -£ef . fg : =
KC.CF . . . . KC . CF . . ,
--— . a, its resolution selves us fg = J - .2a, whichIK 3 IK . EF

is tiie first theorem or rule for the thickness of the pier ; but

which will probably be too small, by having taken the whole

push of the arch as acting at the lowest point c.

Second Solution .—In the second mode of solving this pro-
blem, though the arch stones are supposed to belaid in mor¬
tar, and so cemented or locked together as to prevent them
from easily sliding on one another, yet the whole not consi¬
dered so firm or hard as to form as it were one solid
stone; but the mortar or connection being only so firm, that
if the piers were not sufficientlystrong, the arch would break
in the weakest part, and overturn the piers, in this method
too let all the matter in the arch bdec be supposed collected
into its centre of gra¬
vity i, through which
draw oi from the

centre o,a nd through
the joint sr of the
arch in which the
centre of gravity is
situated: perpendi¬
cular to the joint sr
draw iqp, the direc¬
tion in which the

D T RE H
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joint sr resists and supports the action of the arch at i : draw

ik perpendicular to ac, or in the direction of gravity, also

gp and kg perpendicular to ip or parallel to oir. Then it

ik represent the weight of the arch bdec in the direction of

gravity, this will resolve into ia the force acting against the

pier perpendicular to the joint sr, and qk the part of the

force parallel to the same: the line iq is the only force acting

perpendicular on the arm gp, of the crooked lever fgi>, to

turn the pier about the point g; consequently iq x gp will

express the efficacious force of the arch to overturn the pier,

and which must be equal to the force of the pier itself, de-
IQ

noted by the area egx -J-fg as before: that is —. a . gp = ef .

fg . ^fg = ^ef . fg% a denoting the area of the section bdec

of the arch, as ef . fg denotes the section efgh of the pier.

And this equation, after substituting for gp its value, will be

a 2d theorem for the thickness of the pier, and ■which may

probably be rather above the just quantity.

Schol .—As the centre of gravity is employed in both the

preceding methods, it will be necessary to employ a few lines

on the manner of finding the place i of that centre, together

with the various other lines in the figure dependent on and

connected with it. Now the centre of gravity i may be

known either by mathematical calculation, or by mechanical

and geometrical measurement. The best way of performing

the first method seems to be on this principle, viz. * That

the content of the solid described by any plane surface, either

in moving parallel to itself, or in revolving about a line as

an axis, is always equal to the product of the generating

plane, and the line described by its centre of gravity.’

Hence, if the whole figure odec be first revolved about the

axis oc, the rectangle odec will describe a cylinder, and the

space obsc, of a given figure, will describe a solid of a known

magnitude; the difference of these two solids will give the

content of the solid described by the mixed space bdecsb ;
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this solid content divided by the area of its said generating
figure, gives the circumference of the circle described by the
centre of gravity i, which circumference divided by the num¬
ber 6 -2S32, or by y, will be the length of the radius ik. Next,
by conceiving the same figure to revolve about the axis o»,
and proceeding in the same way, there will be found the line
ok, or the distance of the centre of gravity i from the axis
od. The point i being thus determined, there will hence
be known all the lines kc, oi, rs, iq., it, te, &c. Then, by
denoting the unknown breadth of the pier, eh or eg, by any
letter, as z, in terms of it will be expressed the perpendicular
gp : thus, by similar triangles, as ik : ok :: th : hv ; hence
gh — hv gives gv, and oi : ik :: gv : gp expresses the
unknown line gp. Lastly, the value of gp substituted in the

IQ . GP
foregoing equation -J-ef . fg’ =——— .a, it will be in the

form of a quadratic, the solution of which will give the
value of fg, the thickness of the pier sought, very near the
truth.

The mechanical way of finding the centre of gravity i, and
the geometrical measurement, is thus performed : On card-
paper or pasteboard, or any other thin plate, construct the
given figure bdecb very correctly, of a pretty large size, from
a scale: then cut it out very neatly by the extreme edges,
and lay it so as just to balance itself over the straightedge
of a table, the line ce parallel to the edge, and close by the
edge of the table draw a line on the paper, which will be the
line ik ; next balance the same figure in like manner with the
line de parallel to the edge of the table, close by which draw
another line, crossing the former line in the point i, which
will be the centre of gravity of the figure, determined suffici¬
ently near the truth. This done, lay this point i down on
another general construction of the figure, having the repre¬
sentation of the pier annexed, on which also draw all the other
lines before mentioned, measuring their lengths by the scale
of construction, and noting them down. Then with these,
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together with the thickness of the pier eh or fg, denoted by
the unknown letter z, compute the value of gp, which, with

z the value of fg, substitute in the equation -£ef . fg 1 ==

—-. a, which reduce and solve as above mentioned, to

determine the value of z or FG the thickness of the pier;
which may thus be easily determined in all cases, and with a
sufficient degree of accuracy.—The same methods of deter¬
mining the centre of gravity, and the lines ik, kc, in the fig.
to the 2d example following may be employed, to substitute

KC • CFin the expression fg = */--— . 2a, for determining the

thickness of the pier by the first rule.

In the foregoing solutions, it appears that, besides having
given all the measures or dimensions of the arch and height
of the pier, it is necessary to know the areas of their vertical
transverse sections, or at least that of the superstructure
RDEC : and this is easily to be found, when the figure of the
arch bc and the exterior de are known, viz, by deducting the
area of the space or vacuity obsc from that of the whole
figure odec.—T he foregoing solutions may also be consi¬
dered as taking place either when the pier is all dry, or when
it stands partly in water, which can penetrate its foundation
or the joints of the masonry: and whether this last circum¬
stance takes place or not, can probably be well judged of and
ascertained by the experienced builder : if it do take place,
which is perhaps commonly the case, then in the calculation
the weight of the part in water must be reduced in the pro¬
portion of 5 to 3, as stone loses 2 parts in 5 ol its weight when
immersed in water.-—In the foregoing solution it has also been,
supposed that the pier is made every where straight alike, or
equally thick down to the very bottom, as represented in the
two preceding figures. But, instead ol that, it is very com¬
mon to enlarge the pier towards the bottom, both to give it
a broader base to stand on, without increasing the weight or
dimensions above, and to make the lever wic longer at the
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base, to oppose a

greater resistance to

its oversetting or turn¬

ing about the point
g, and without any

sensible increase to

the weight of the

pier. On the con¬

trary, as the thick¬

ness, and consequently the weight of the pier,- maybe dimi¬

nished above, in proportion as it is enlarged at the founda¬

tion, without diminishing its force of resistance and stability,

the experienced architect will avail himself of the circum¬

stance, to reduce in a considerable degree the size of the pier,

and the expense of the work.

In the investigation of this proposition, the sections of the

arch and pier are used for their solidities, as being evidently

in the same proportion, or in that of their weights, since they

are of the same length, viz, the breadth of the bridge. By

the above rules then, the necessary thickness of a pier may

be found, so that it shall Just balance the spread or shoot of

the arch, independent of any other arch on the side of the

pier. But the weight of the pier ought a little to prepon

derate against, or exceed in effect, the shoot of the arch: and

therefore the thickness ought to be taken a little more than

what will be found by these rules ; unless it be supposed that

the pointed projections of the piers against the stream, beyond

the common breadth of the bridge, will be a sufficient addi¬

tion to the pier, to give it the necessary preponderancy. We

may now take some examples of the calculation in numbers,

to show the manner of operation, and in them also to point
out the easiest methods of calculation.

example 1.

Supposing the arch in the figure to be a semicircle, whose
height or pitch is 45 feet, and consequently-its span 90 feet;
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also supposing the thickness db at top to be 7 feet, and the
height cf to the springing 20; let it be required to find
the thickness fg of the pier, necessary to resist the shoot of
the arch ; the roadway being a horizontal right line.

Now in this example we have ob oroc == 45, hd = 7, (fig.
p. 74) od or ce = 52, cf == 20, and ef =: 72. Hence, the
rectangle odec = od x oc = 52 x 45 = 2340, and the circu¬
lar quadrant obc = 45 2 x = 1590 nearly, the difference
of these gives 750 = a, the area of the arch bdec. Again,
the content of the cylinder generated by the rotation of the
rectangle odec, about the axis od, is 4oc 2 X 44 X od; and
the content of the seinisphere, generated by the rotation of
the quadrant obc, about the axis ob, is 4oc 2 x x f-oB ;
therefore the difference of these gives 4oc 2 x 44 X (od —
1-0B) = 8100 X -J-T X (52-30) = 8100 X 44 X 22 = 8100
x " x 11 = 140000, for the content of the solid generated

by the area bdec (750) about the axis bd. Hence 140000
750 = 186the circumference or path described by the centre
of gravity i about od ; consequently 1 SGf x ^ = 29-7 =
ok, the radius of that circle. Hence oc — ok == 45 — 29-7
= 15-3 = kc.

Again, the content of the cylinder generated by the rota¬

tion of the rectangle obec, about the axis oc, is 4od 2 x 44

X oc ; and the content of the semisphere, as above, is 4ob 2
x 44 x 40c ; therefore the difference of these two (od 2 —

■JOB 2) X 44 X oc, gives (52 2 — 4 ■45 2 ) X “ x 45 = 1354

X 7 1 x 90 = 191494, for the content of the solid generated

by the area bdec (750) about the axis oc. Hence 191494

a- 750 = 255-325 the circumference or path described by

the centre of gravity 1 about oc ; conscq. 255-325 x —

40 -6 = ik, the radius of that circle. Lastly, the 1 st theorem
KC.CF.2a . 15-3 X 20 x 1500 510000

s/ IK . EF glVeS ^ 40-fi X 72 — ^ 3248 " =

124 feet = fg, for the required thickness of the pier ; but
which is probably below the truth, and perhaps below what
a practical engineer would fully trust to.

It may be added, that the method of determining the place
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of the centre of gravity I, bybalancing the figure bdec, gave,
■within a small fraction, the same values of the two lines ik,
kc, viz, 40 + , and 15 -f, which were above calculated to
be 40-6 and 15-3.

Secondly, to apply
our example to the
2d theorem, -Jef. fg 1

iq^. GP
IK

the

RE HP T

same methods of de¬

termining the posi¬
tion of the centre of
gravitjr i may be em¬
ployed. If the me¬
chanical method of balancing' and measurement on a scale be
used, we may then measure, not only the lines ik, ok,kc, but
all the other lines also depending on it, asoi, OR, Ti, tr, te,
ica, ia, &c, excepting only such lines as depend on the un¬
known breadth fg of the pier. But, instead of that, we shall
calculate the accurate value of all the lines wanted by strict
mathematical principles, as follows. In the example are given
OB = oc = de = 45, od = ce = 52, cf = 20, ef = 72 ;
and just above we have found by calculation ok = 29'7, kc
= 15-3, ik = 40‘6, and the area bdec or a = 750 ; and we
have to compute iq and gp. Now oi = v/(oic 2 + ik 1) =
V^(29'7 I + 40-6*) = 50’3 ; then by similar triangles oi : OK
:: ik : iq = 23-97.

Again, to get an expression for gp, put the required
thickness of the pier eh or fg = z ; then, because by
similar triangles, ik : ok : : od : dr = 38-04,
and ik : io : : od : or = 64'42, hence or — oi = 14-12 = 1R,
and ok : oi : : ir : tr = 23-91, also de — dr = 6 -96 = re,
hence tr +re = 30’87 = te, and th = te -f eh =te + Z,
then ik : ok : : th : hv = 22-5S + 0-73152,
and gh — nv = gv = 49-42 — -7315.2,
lastly oi : ik : : gv : gp = 89-89 — -59042.
These values being now substituted in the 2d theorem 4ef .
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fg*= IQ * . a, give 36z 1 = 17664'9 — 261‘5s, or* 1 + 7'2GzIK

= 490'69 ; the root of which quadratic equation gives s —

18'82 = eh or fg, the thickness of the pier sought.

It may be presumed that this theorem brings out the thick¬

ness of the piers very near the truth, and very near what

would be allowed in practice by the best practical engineers,

as may be gathered from a comparison of the two cases of

Westminster and Blackfriars bridges, in the former of which

the centre arch is a semicircle of 76 feet span, and 17 feet

thickness of piers,and in the latter it is a semiellipse, of 100

feet span, 40 feet in height, and 19 feet thickness of piers.

EXAMPLE 2.

Suppose the span to be 100 feet, the height 40 feet, the

thickness at top 6 feet, and the height of the pier to the

springer 20 feet, as before.

Here the figure either is, or may be considered as, a scheme

arch, or the segment of a circle, in which the versed sine ob is

= 40, and the right sine oa or oc —50; also db = 6, cf ==

20, and ef = 66. Now, by the nature of the circle, whose

centre is w, the ra-
I> Tdius wb or wc =

ob 1 -foe 1 40 1 -f50'

2ob

= 51

80

hence ow

= 51|- 40 = lli;
and the area of the

semisegment obc is

found to be 1491;

which being taken from the rectangle odec = od x oc =
SO x 46 = 2300, there remains 809 = a, the area of the

space bdecb. Hence, by the method of balancing this space,

and measuring the lines, there will be found, kc = 18, ik
= 34-6, ix = 42, KX = 24, ox = 8, ia = 19'4, te = 35-6,

and th = 35'6 + z, putting 2 = eh, the breadth of the pier,
VOL. i. G
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as before. Then ik : kx : : tii : hv = 24*7 +. 0*7 z ;

hence gh — HV — 41*3 — 0*7? = gv, and ix : ik :: GV :
GP = 34'02 — 0'58z. These values being now substituted

. , i<i . gp . a
in the theorem 4-ef . fg* = -, give 33td = 15431*47ik ’ &
— 263*09z, or z’ + Sz = 467‘62, the root of which quadra¬
tic equation gives s = 18 = eh or fg the breadth of the
pier, and which it mat* be presumed is sufficiently near the
truth.

These two cases it may be expected are sufficient to ex¬

emplify this method of determining the proper dimension of

the piers ; a method, the propriety of which is thus confirmed

hv conclusions that are so conformable to the practice of the

best engineers. In all cases it appears to be the easiest

course, and sufficiently correct, to construct accurately the

semiarch and superstructure above it; then find its centre of

gravity by the method of balancing it in two positions per¬

pendicular to each other, viz. in lines parallel and perpendi¬

cular to the base ac ; next through that centre x draw a line

tw perpendicular to the curve of the arch, or in the direction

of the arch joints there, and meeting the base line in the point

x; next, through i draw tvf perpendicular to ix, and ik

perpendicular to ac, and kq perpendicular to tp. Then

measure by the scale as many of these lines as are necessary

in the intended calculation, and as are used in working the

2d example above, viz, the lines ik, kx, te, iq, and compute

the area bdec = a, which may be sufficiently done in a me¬

chanical manner, and to an approximate degree, whatever

maybe the figure of the curve, and shape of that area. After

this, continue to complete the rest of the calculation as-in the

example above.
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SECTION IV.

THE FORCE AND FALL OF THE WATER, &C.

PROP. XV.

To determine the Form of the Ends of a Pier, so as to make

the Least Resistance, or be the Least subject, to the Force of

the Stream of Water.

Let the following figure represent a horizontal section of

the pier, ab its breadth, cd the given length or projection

of the end, and adb the line required, whether right or

curved; also let ef represent the force of a particle of water

acting on ad at the point f, in the direction parallel to the

axis cd : produce ef to meet ab in G, and draw the tangent

fh ; also draw eh perpendicular to fh, hi perpendicular to

ef, and fk perpendicular to dc.

I M!

Now the absolute force ef of the particle of water may be

resolved into the two forces eh, hf, and in those directions;

of these, the latter one, acting parallel to the face at f, is of

no effect; and the former eh is resolved into the two ei, iii;

so that ei is the only efficacious force of the particle to move

the pier in the direction of its axis or length : That is, the

absolute force is to the efficacious force, as ef is to ei. Then,

since ef is the diameter of a semicircle passing through h,

by the nature of the circle it will be, as ef : ei : :.ef 2 : eh 2 ::

(by similar triangles) nf 1 : hi 2 and :: the square of the fluxion
G 2

/
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of the curve or line : the square of the fluxion of the ordinate
fk, because hf, hi are parallel to the. line and ordinate.

Therefore, putting the abscissa dk = x, the ordinate kf

= y, and the line dp = z, it will be, as ir : y- :: 1 (the force
'j

Ef) : -q- ~ the force of the particle at f to move the pier

in the direction efg. But the number of particles striking

against the indefinitely small part of the line, is as y ; this
i 3 j 3

drawn into the above found force ol each, we have— =
Z- X■

for the fluxion of the force, or the force acting against the

small part z of the line.

But, by the proposition, the whole force on dfa must be
y ?

a minimum, or the fluent of —..-must be a minimum, when
.V1 +jr

t liat of x becomes equal to the constant quantity dc; in which

case it is known that
x’y3

(x'+f-f must be always equal to some

constant quantity q ; and hence xy 3 = q x (x~ + f) z-

Now, in this equation, it is evident that x is to y in a con¬

stant ratio ; but when two fluxions are always in a constant,

ratio, their fluents x, y, it is known, are also in a constant

patio, which is the property of a right line. Therefore dfa

is a right line, and the end add of the pier must be a right-

lined triangle, that the force of the water upon it may be the

least possible.

PROP. XVI.

To determine the Quantity of the Resistance of the End of a

Pier against the Stream of tVaier.

Using here the same figure and notation as in the last
proposition, by the same it is found, that the fluxion of the

y 3
force of the stream against the face DP, s and since

° x~ -i-y

the fluxion of the force against the base isy, it follows, that
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the force of the stream against the base ab, is to the force

against the face adb, as (y) the fluent ofj, is to the fluent of

efficacious force against the face of the pier, as its breadth is

breadth.

Corollary 1. —If the face adb be rectilineal.

Putting dc — a, ac — b, and ad = */{ aa + bb) — c ;

then, as a : b : : x : y by similar triangles; hence x =

itself. Consequently the force on the flat base ab, is to that

on the triangular end adb, as y to or as cc to bb, that is,

as AD' to AC 1.

And if ac be equal to cd, or ade a right angle, which is

generally the case, then ad 1 = 2ac% and the force on the

base will be to that on the face, as 2 to 1. Moreover, as the

force on adb, when adb is a right angle, is only half of the

absolute force, so it is evident that the force will be more

than one-half when adb is greater than a right angle, and

less when it is less ; and also, that the longer ad is, the less

the force is, it being always inversely as the square of ad.

The radius ac = cd = a ; then 2 ax — xx — yy, or x =

-. That is, the absolute force of the stream, is to the
* +/-

y 3

to double the fluent of when y is equal to half the

—, and x = —■; this being written for it in the general

aa-\~ bb cc

of the force on ad ; the fluent of which, or ——, is the force

AviM»nfmi An nK Atm if linrtnmoi'

Corollary 2. —If adb be a semicircle.

a -- C (aa — yy ), ard
(Vaa-yy)

; hence w—r— becomes
* + J
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——— x j, the fluent of which is ——x y ; and there-aa aa ^
fore the force on the base is to the force on the circular end,

aa — 4w
as y is to- - ■' x y, or as aa to aa — \yy, or as 3 aa to

3 aa — yy. And when y = a = ac, the proportion becomes
that of 3 to 2. So that, only one-third of the absolute force
is taken off by making the end a semicircle.

Corollary 3.—When the face adb is a parabola.

Then, the notation being as before, viz, dc = a, and ac
, . . ,, , ayy . 2 ayj

— b, it is a : x : : bb : yy ; hence x — -jy, and x = — ■
which being written in the general expression, the fluent of

it becomes the circular arc wdiose radius is — and tangent y,

or = — x arc whose radius is 1 and tangent -n 'r't so that
2 a n bb

the absolute force is to the fpree on the parabolic end, as j/

is to the arc whose tangent is y and radius — ; that is, as the

tangent of an arc is to the arc itself, the radius being to the
2ay .... ,11 ii

tangent, as 1 to -■ , or as 2 to -nr. And when y — b, the ra-
ay

bb bb'

tio of the tangent to radius, is that qf 2 to — : or that of 2
° a

to 1 when dc = CA. In which case, the whole force is to
the force on the parabolic end, as the tangent, which is
double the radius, is to the corresponding arc ; that is, as the
tangent of 63° 26' 4" to the arc of the same, or as 2 to 1" 10714;
which is a less-force than on the circle, but greater than on
the triangle. And so on for other curves; in which it will
be found, that the nearer they approach to right lines, the
less the force will be, and that it is least of all in the triangle,
in which it is one-half of the whole absolute force when right-
angled.
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It must be noted, however, that in determining the best

form of the end of the pier to be a right-lined triangle, the

water is supposed to strike every part of it with the same

velocity: had the variably increased velocity been used, the

form of the ends would come out a little curved ; but as the

increase of the velocity in the best bridges is very small, the

difference in them is quite imperceptible.

I>ROP. XVII.

To determ ine the Fall of the Water in the Arches.

Having, in the foregoing propositions, treated of the re¬

sistance made by the piers to the current of water, it will now

be proper to contemplate the effects of that resistance, and of

•the contraction of the passage they produce in the water¬

way. These effects are, a fall, or sudden steep descent, and

an increase of velocity in the stream of water, just under the

arches, more or less in proportion to the quantity of the ob¬

struction ; being somewhat observable at the place of all

bridges, even where the arches are very large and the piers

small, but in a high and extraordinary degree at London

bridge, and some others, where the piers, and the sterlings,

are so very large, in proportion to the arches. Now, in an

open canal or river, an equal quantity ot water passing in

every part, in the same time, if in any part the passage be

narrower, there, the bottom continuing the same, the velo¬

city of the stream must be so much the greater, and a corre¬

spondent rise in the surface must also take place, to produce

that increased celerity. Similar effects also occur in a river

when any obstacles, as the piers of a bridge, are placed in

.the way of a stream. This is resisted and obstructed by the

piers; of course the water rises against them, and conse¬

quently the stream from thence descends the more rapidly.

And this is the case, not only in such canals or rivers where

the stream runs always the same way, but in tide rivers also,

both upward and downward. During the time of flood, when
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tlie tide is flowing upward, the rise of the water is against

the under side of the piers ; but the difference between the

two sides gradually diminishes as the tide flows less rapidly
towards the conclusion of the flood. When this has attained

its full height, and there is no longer any current, but a still¬

ness prevails in the water for a short time, the surface assumes

an equal level, both above and below bridge. But, as soon

as the tide begins to ebb again, the resistance of the piers

against the stream, and the contraction of the water-way,

cause a rise of the surface above and under the arches, with

a fall and a more rapid descent in the contracted stream just

below. The quantity of this rise, and of the consequent ve¬

locity below, keep both gradually increasing, as the tide con¬

tinues ebbing, till at quite low water, when the stream or

natural current being the quickest, the fall below the arches

is the greatest. And it is the quantity of this fall which it is

the object of this problem to determine.

Now, the motion of free running water is the consequence

of, and produced by the force of gravity, as well as that of

any other failing body. Hence the height due to the velo¬

city, that is, the height to be freely fallen by any body to

acquire the observed velocity of the natural stream, in the

river a little above the bridge, becomes known. From the

same velocity also will be found that of the increased stream

in the narrowed way of the arches, by taking it in the reci¬

procal proportion of the breadth of the river above, to the

contracted way in the arches; viz. by saj’ing, as the latter is

to the former, so is the first velocity, or slower motion, to the

quicker. Next, from this last velocity, wili be found the

height due to it as before, that is, the height to he freely

fallen through by gravity, to produce it. Then the differ¬

ence of these two heights, thus freely fallen by gravity, to

produce the two velocities, is the required quantity of the

water-fall in the arches; allowing however, in the calcula¬

tion, for the contraction of the stream, in the narrowed pas¬

sage, at the rate as observed by Sir I. Newton. Such rhen

are the elements and principles on which the solution of the



SECT. 4. THE FORCE AND FALL OF THE WATER, &C.
8 !)

problem is to be made out; and which it is now easy for any

one to perform.

But, as it may be desirable to exhibit the manner of the

solution of this curious problem, by some former noted au¬

thors, in this instance 1 shall give the solution from some ma¬

nuscripts that have now been many years in my possession:

viz, one solution by the celebrated Wm. Jones, Esq. the

friend of Sir I. Newton, and father of the late Sir Wm. Jones;

which is in Mr. Jones’s own hand writing, and which I had

from the late Mr. John llobertson, many years clerk and li¬

brarian to the Royal Society, who had the paper from Mr.

Jones himself. Another solution is by the same Mr. Robert¬

son himself, from a paper found among a great number of

other manuscripts which I purchased at the sale of his books,

after hisdeath in the year 1116 ; and among which papers there

are also other solutions that have never been published. The

solutions here inserted, are given in the same words and pe¬

culiar manner as in those authors, in order to show their dif¬

ferent forms and modes of statins: and working. And first

the solution by Mr. Jones, done in his usual manner, which

was always remarkably concise, neat, and accurate.

The Solution of JV?n. Jones, Esq.

“ Lemma. In a chanel, whose stream runs with such an

uniform velocity, in any given time, as is acquired by falling

from a certain bight (h ); if an obstacle should contract the

passage of the water, in any place, the water above the ob¬

stacle will rise to such a bight (h) as to acquire a velocity

that will discharge the stream as it comes ; but will occasion

a fall at the obstacle: and the difference (n — h) between

these hights, is the measure of that fall.

“ In a chanel of running water, whose breadth (b feet),

and the velocity of its stream (v feet in l"), being given: To

determine the quantity of the fall, occasioned by an obstacle

that takes up p feet of the breadth of the chanel.

“ Let the bight fallen (near the surface of the earth) in l"
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of time, be (a feet); and the contraction of streams, in the

water-ivay, he as t to 1. Put c — -r ——; d~rrcc: Then
J b—p

the quantity of the fall is d— 1 x vv x — feet.

b — p

<£ For, the ivater-way takes up %s (—^—) part of the breadth

of the chanel. But streams are found to be contracted in

the water-way, in the proportion of r to 1. Therefore the

water-way contracted will be {--- — ) — ( = m). . But thej r rc v

current above the obstacle moves v feet in l" of time; and

the velocities of water through different passages, of the same

bight, are as the reciprocals of the breadth of those passages.

Therefore the current, in the true water-way, must move
v \

(—= —v =) nv feet in l" of time.v m m

“ Now, since (a) feet is the bight fallen in l" of time to

■acquire a velocity to move uniformly the length la in that

time : Let x and z feet be the bights fallen to acquire a ve¬

locity to move uniformly the lengths v and nv feet in \" of

time: and because bights fallen are as the squares of their

... , . a , a ,
velocities; therefore—- = —•, and-- = — : consequently

vv x nnvv z

vv nnvv _, vv . ,.
x = —, and z = ——. That is, — feet is the bight of

water necessary to produce, in the chanel, a current that

moves v feet in l" of time. And —feet, is the bight of
4a °

water necessary to produce, in the water-way, a current that

moves nv in that time. Then the difference nn — 1 x —
4 a

of these bights, is the fall in feet. But n — (— = ) rc,

therefore nn = rrcc — d per supposition. Therefore d— 1

X X — feet, is the quantity of the fall. q. e. d.

\
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“ Hence, putting a = l.— , e — L -r > c — Lx '> D = 2 x

B + c = l.c/: Then L.d — 1 + 2l . v + A = Log. of the

quantity of the fall, in feet*.

<c Now, if the length of a pendum vibrating seconds, is

39T26 inches, then will a — 16'0899 feet; and, according to

Newton, r = If: consequently a = 2.191:3861 ; and b =;
0.0757207.”

Such is the solution of this problem as given by Mr. Jones.

And as there is contained in the. same paper with this, a short

solution of another kindred problem, it is here inserted, as
follows,

“ The length, p inches, of a pendulum that performs one

vibration in l" of time, at a given place, being known ; the

altitude (a) fallen from, in 1" of time, will be Spirit inches,
or Ap/wnr feet, at that place.T4,

^ time of l"
“ For (—-:——

'tune m fp

tt a , cc

) fp = (

- )

f c tit
■—• = — = — ; there! ore

t d 1 ’

Itlf

del 'l

“ Consequently a = ifitit inches = ~ptit feet.

“ And putting n = (L.^itit == 2l.7T — l.24 = 1.61408S5;

then l .a = L.p + n.”

Proceed we now to Mr. Robertson’s solution of the pro¬

blem, winch is on the principles, but more in detail, than

Mr. Jones’s. This solution was published by Mr. R. in the

Philos. Trans, vol. 50, or in my new Abridgement, vol. 13,

from which it is chiefly here extracted.

Mr. John Robertson's Solution of the Problem.

“ Sometime before, the year 1740, the problem about the

fall of water, occasioned by bridges built across a river, was

* This is the theorem, adapted to working by logarithms, given

by Mr. Jones to Mr. Gardiner, and printed in p. 12 of his Logarithms

in 4to; the latter L denoting logarithm, in the theorem.
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much spoken of at London, on account of the fall that was

supposed would be at the new bridge to be built at West¬

minster. In Mr. Hawksmoor’s and Mr. Labelye’s pamphlets,

the former published in 1736, and the latter in 1739, the

result of Mr. Labelye’s computations was given: but neither

the investigation of the problem, nor any rules, were at that

time published.

“ In the year 1712 was published, Gardiner’s edition of

Vlacq’s Tables; in which, among the examples there prefixed,

to show some of the uses of those tables, drawn up by the late

Wm. Jones, esq. there are two examples, one showing how

to compute the fall of water at Lotidon-bridge, and the other

applied to Westminster-bridge : but that excellent mathe¬

matician’s investigation, by which those examples were

wrought, was not printed, though he communicated copies

of it to several of his friends. Since that time, it seems as if

the problem had in general been forgotten, as it has not made

its appearance, to my knowledge, in any of the subsequent

publications. As it is a problem somewhat curious, though

not difficult, and its solution not generally known, (having

seen four different solutions, one of them very imperfect,

extracted from the private books of an office in one of the

departments of engineering in a neighbouring nation), I

thought it might give some entertainment to the curious in

these matters,.if the whole process were published,

“ PRINCIPLES.

“ 1. A heavy body, that in the first second of time has

fallen the height of a feet, has acquired such a velocity, that,

moving uniformly with it, will in the next second of time

move the length of 2 a feet.

. “ 2. The spaces run through by falling bodies are propor¬

tional to one another as the squares of their last or acquired

velocities.—These two principles are demonstrated by the
writers on mechanics.

“ 3. Water forced out .of a larger chanel, through one or
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more smaller passages, will have the streams through those?
passages contracted in the ratio of 25 to 21.—This is shown
in the 3Gth prob. of the 2d book of Newton’s Principia.

“ 4. In any stream of water, the velocity is such, as would
be acquired by the fall of a body from a height above the
surface of that stream.—This is evident from the nature of
motion.

“ 5. The velocities of water through different passages
of the same height, are reciprocally proportional to their
breadths.—For, at some time, the water must be delivered
as fast as it comes; otherwise the bounds would be over¬
flowed. At that time, the same quantity, which in any time
flows through a section in the open chanel, is delivered in
equal time through the narrower passages; or the momentum
in the narrow passages must be equal to the momentum in
the. open clianel; or the rectangle under the section of the
narrow passages, by their mean velocity, must be equal to
the rectangle under the section of the open chanel by its mean
velocity. Therefore the velocity in the open chanel is to the
velocity in the narrower passages, as the section of those pas¬
sages is to the section of the open chanel. But, the heights
in both sections being equal, the sections are directly as the
breadths. Consequently the velocities are reciprocally as the
breadths.

“ 6 . In a running stream, the water above any obstacles
put therein, will rise to such a height, that by its fall the
stream mayT be discharged as fast as it comes.—For the same
body of water, which flowed in the open chanel, must pass
through the passages made byr the obstacles : and the nar¬
rower the passages, the swifter will be the velocity of the
water : but the swifter the velocity of the water, the greater
is the height, front which it has descended: consequently the
obstacles, which contract the chanel, cause the water to rise
against them. But the rise will cease, when the water can
run off’as fast as it comes : and this must happen when, by
the fall between the obstacles, the water will acquire a velo¬
city in a reciprocal proportion to that in the open chanel, as
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the breadth of the open chanel is to the breadth of the nar¬

row passages.

“ 7. The quantity of the fall, caused bv an obstacle in a

running stream, is measured by the difference between the

heights fallen from, to acquire the velocities in the narrow

passages and open chanel.—-For, just above the fall the velo¬

city oi' the stream is such, as would be acquired by a body

falling from a height higher than the surface of the water:

and at the full, the velocity of the stream is such, as would

be acquired bv the fall of a heavy body from a height more

elevated than the top of the falling stream ; and consequently

the real fall is less than this height. Now as the stream comes

to the fall with a velocity belonging to a fall above its sur¬

face ; consequently the height belonging to the velocity at

the fall, must be diminished by the height belonging to the

velocity with which the stream arrives at the fall.

“ PROBLEM.

ec In a chanel of running water, whose breadth is con¬

tracted by one or more obstacles; the breadth of the chanel,

the mean velocity of the whole stream, and the breadth of

the water-way between the obstacles, being given ; to find

the quantity of the fall occasioned by those obstacles.

“ Let b — breadth of the chanel in feet;

v = mean velocity of the water in feet per second ;

c = breadth of the water-way between the obstacles.

Now 25 : 21 :: c : the water-way contracted, byprin. 3.

And iv-
2ic -Vf the veloc. in the contr. wav, prin.

Also (2a) 2 : w :: a : height fallen to gain the vel. v, 1 and 2.

25& 2 a/i —y
And (2a) 2 : a. : (—) 2 x ditto for the vclo-

25 b

city ——c, by princ. 1 and 2.
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2 5b vv w
Then —— x-— is the measure of the fall required, pnn, 7.21c 4 a 4 a L 1

.2 5b, vv
Or [ (——) J — !] x — is a rule for computing the fall.

Here a = 16,0899 feet; and 4 a = 64,3596.

“ example 1. For London-Briilgc .

“ By the observations made by Mr. Labelye in 174 6,
The breadth of the Thames at London-bridge is 026 feet;
Sum of water-ways at the time of low water is 236 feet;
Mean veloc. of stream just above bridge is f. per sec.
Under almost all the arches there are great numbers of drip-
shot piles, or piles driven into the bed of the water-way, to
prevent it from being washed away by the fall. These drip-
shot piles considerably contract the water-ways, at least 'G of
their measured breadth, or about 394 feet in the whole. So

that the water-way will be reduced to 196| feet.
“ Now b = 926; c = 196f; v = 3£; 4a = 64,3596.

2 5b 23150
Then —■ = = 5,60532 ; its square = 31,4196;

2 5b
And 31,4196 — 1 = 30,4196 = (—) 2 ~ I ;

19 361 . , vv 361

Also w = (-)• = ^^,,1-;- = —- 5 ^=0,1«8>.
Then 30,4196 x 0,15581 = 4,739 f. = 4 f. 8,868 inc. the

fall required.

“ By the most exact observations made about the year
1736. the measure of the fall was 4 feet 9 inches.”

“ example 2. For JVestminster-Bridge.

“ Though the breadth of the river at Westminster-bridgeO C7

is 1220 feet; yet, at the time of the greatest fall, there is
water through only the 13 large arches, which amount to
820 feet: to which adding the breadth of the 12 intermediate

piers, equal to 174 feet, gives 994 for the breadth ofthe river
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nt that time; and the velocity oF the water just above the
bridge, from many experiments, is not greater than 2~ feet
per second.

“ Here b — 994 ; c = 820; v = 2A ; 4a = 64,3596.
25b 24850

Now-= ------ = 1,443; and its square = 2,082;21c 1/220
25b

Hence 2,082 - 1 = 1,082 = (—)■ — 1.

Also m = (I) 1 = ; and

w 81 0,0786.
4 a 16 x 64,3596

Then 1,082 x 0,0786 = 0,084f. = 1 inch, the fall required;
and is about half an inch more than the greatest fall observed
by Mr. Labelye.”

Among the old papers of Mr. Robertson I find several other
solutions of the same problem, by different persons, and on
somewhat different principles. Several of the papers also,
which are of a miscellaneous nature, relate to other branches
of the subject of bridges ; some of which, being curious, I
shall avail myself of, by insertion in the appendix to this
Tract.—The following table shows, at one view, the quantity
of fall in the water under the arches, in consequence of its
obstruction and contraction by the piers, according to seve¬
ral rates of velocity and quantity of obstacles; as computed
on the foregoing principles.



ATableofthenaturalRiseofWater,inProportiontotheResistanceorObstructionitmeetswith,initsPassa

CO
©|igO V U <n

o e o « tLto V £ ip c-

g aO .£>

° 5=?
m,9 %o

W)3 5 O t5 o/5 »* ?-*w o i—4) ra
W o S 0 'S»r c” ~-0) C P O

•C& S:

a>

5 o£o

s £ 3 2?ft>c ^ jrf

£ « .*5 g «
^ f Sell ©

C 0 j= T-ij= 3 U
j= a*
-c i»*g

ss 1

aj 3 o 1VW^

T. °
5 5 a a, o n*'o « c.

> °a c.s c

Cl £
^ co~ t+H

o o

CJ

£_D<
o _C

VOL. I



( 98 )

SECTION V.

OF THE TERMS OR NAMES OF THE VARIOUS PARTS PECU¬

LIAR TO A BRIDGE, AND THE MACHINES, &C, USED

ABOUT IT; DISPOSED IN ALPHABETICAL ORDER.

Abutment, op Butment, which see in its place below.

Arch, an opening of a bridge, through or under which

the water and vessels pass, and which is usually supported

by piers or by butments. Arches are denominated circular,

elliptical, cycloidal, catenarian, &c, according to the figure
of the curve of them. There are also other denominations

of circular arches, according to the different parts of a cir¬

cle: So, a semicircular arch, is half the circle; a scheme or

skeen arch, is a segment less than the semicircle ; and arches

of the third and fourth point, or gothic arches, consist of

two circular arcs, exccntric and meeting in an angle at top,

each being l-3d or l-4th, &c, of the whole circle.

The chief properties of the most considerable arches, with

regard to the extrados they require, &c, may be learned

from the second section. It there appears, that none, but

the arch of equilibration in the 2d example to prop. 5, can

admit of a horizontal line at top: that this arch is not only

of a graceful, but of a convenient form, as it may be made

higher or lower at pleasure with the same opening: that,

with a horizontal top, it can be equally strong in all its parts,

and therefore ought to be used in all works of much conse¬

quence. All the other arches require tops that are curved,

either upward or downward, some more and some less. Of

these, the elliptical, or the cycloidal arch, seems to be the

fittest to be substituted instead of the bala nced one, with the

least degree of impropriety: it is in general also the best

form for most bridges, as it can be made of any height to

the same span, or of any span to the same height, while at

the same time its flanks are sufficiently elevated above the
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water, even when it is pretty flat at top; a property of

which the other curves are not possessed in an equal degree;

and this property is the more valuable, because it is remarked

that, after any arch is built, and the centering struck, it set¬

tles more about the handles than the other parts, by which

other curves are reduced near to a straight line at the flanks.

Elliptical arches also look bolder, are really stronger, and

require less materials and labour than the others. Of the

other curves, the cycloidal arch is next in quality to the

elliptical one, for all the above properties. And, lastly, the

circle. As to the others, the parabola, hyperbola, and ca¬

tenary, they majr not at all be admitted in bridges of several

arches; but may in some cases be used for a bridge of one

single arch, which is to rise very high, because then not

much loaded at the flanks. We may hence also perceive

the fallacy of those arguments which assert, that because the

catenarian curve supports itself equally in all its parts, it

will therefore best support any additional weight laid upon

it: for the additional building made to raise the bridge to

a horizontal line, or nearly such, by pressing more in one

part than another, must force those parts down, and the

whole must fall. Whereas, other curves will not support

themselves at all, without some additional parts built above

them, to balance them, or to reduce their parts to an equi¬
librium.

Akchivolt, the curve or line formed by the upper sides

•of the voussoirs or arch stones. It is parallel to the intrados

or underside of the arch when the voussoirs are all of the

same length; otherwise not. By the archivolt is also some¬
times understood the whole set of voussoirs.

Banquet, the raised foot path at-the sides of the bridge

next the parapet. This ought to be allowed in all bridges

of any considerable size: it should be raised about a foot

above the middle or horse passage, being made 3, 4, 5, 6, 7,

&c, feet broad, according to the size of the bridge, and

paved with large stones, of a length equal to the breadth of
the walk.
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Battardf.au, or Coffer-dam, a case of piling, &c, with¬
out a bottom, fixed in the bed of the river, water-tight or
nearly so, by which to lay the bottom dry for a space large
enough to build the pier on. When it is fixed, its sides
reaching above the level of the water, the water is pumped
out of it, or drawn off by engines, till the included space be
laid dry; and it is kept so, by the same means, if there are
leaks which cannot be stopped, till the pier is built up in it;
and then the materials of it are drawn up again.

Battardeaux are made in various manners, either by a sin¬
gle inclosure, or by a double one, w ith clay or chalk rammed
in between the two, to prevent the water Iroin coming
through the sides. And these inclosures are also made,
either with piles only, driven close by one another, and
sometimes notched or dove-tailed into each other; or with
piles, grooved in the sides, and driven in at a distance from,
one another, with boards let down between them in the
grooves.

The method of building in battardeaux cannot well be
used where the river is either deep or rapid. It also re¬
quires a very good natural bottom of solid earth or clay:
lor, though the sides be made water-tight, if the bottom or
bed of the river be of a loose consistence, the water wall
ooze up through it, in too great abundance to be evacuated
by the engines. It is almost needless to remark, that the
sides must be made very strong, and well propt or braced
on the inside, to prevent the ambient water from pressing
the sides in, and forcing its way into the battardeaux.

Bridge, a work of carpentry, masonry, or iron, built over
a river, canal, &c, for the convenicncy of crossing the same.
A bridge is an edifice forming a way over a river, &c, sup¬
ported by one arch, or by several arches, and these again
supported by proper piers or butments. A stately bridge,
over a large river, is one of the most noble and striking pieces
of human art. To behold huge and bold arches, composed
of an immense quantity of small materials, as stones, bricks,
&c, so disposed and united together, that they seem to form.
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but one solid compact body, affording a safe passage for

men and carriages over large waters, .which with their navi-

gation pass free and easy under them at the same time, is a

sight truly surprizing and affecting.

To the absolutely neeessary parts of a bridge, already

mentioned, viz, the arches, piers, and abutments, may be

added the paving at top, the parapet wall, either with or

■without a balustrade, &c; also the banquet, or raised foot

way, on each side, leaving a sufficient breadth in the middle

for horses and carriages. The breadth of a bridge for a

great city should be such as to allow an easy passage for

three carriages and two horsemen a-breast in the middle

way, and for three foot passengers in the same manner on

each banquet. And for other less bridges, a less breadth.

As a bridge is made for a way or passage over a river, &c,

■so it ought to be made of such a height, as will be quite

convenient for that passage; but yet so as to be consistent

with the interest and concerns of the river itself, easily ad¬

mitting through its arches the craft that navigate on it, and

all the water, even at high tides and floods. The neglect of

this precept has been the ruin of many bridges, and parti¬

cularly that at Newcastle, over the river Tyne, on the 17th

of November 1771. So that, in determining its height, the

conveniences both of the passage over it, and under it,

should be considered, and the height made to answer the

best for them both, observing to make the convenient give

place to the necessary, when their interests are opposite.

Bridges are generally placed in a direction perpendicular

to the stream in a direct line, to give free passage to the

water, &c. But some think they should be made, not in a

straight line, but convex towards the stream, the better to

resist floods, &c. And some such bridges have been really

made.—Again, a bridge should not be made in too narrow a

part of a navigable river, or one subject to tides or floods:

because the breadth being still more contracted by the piers,

will increase the depth, velocity, and fall of the water under

the arches, and endanger the whole bridge and navigation.
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Bridges are usually made with an odd number of arches,

as one, or three, or five, or seven, &c; either that the mid¬

dle of the stream or chief current may flow freely without

the interruption of a pier; or that the two halves of the

bridge, by gradually rising from the ends to the middle, may

there meet in the highest and largest arch ; or else, for the

sake of grace, that by being open in the middle, the eye, in

viewing it, may look directly through there, as one always

expects to do in looking at it, and without which opening

we generally feel a disappointment in viewing it.

If the bridge be equally high throughout, the arches, being

all of a height, are made all of a size; which causes a great

saving of centring. If the bridge be higher in the middle

than at the ends, the arches are made to decrease from the

middle towards each end, but so, as that each half may have

the arches exactly alike, and that they decrease in span, pro¬

portionally to their height, so as to be always the same kind

of figure, and similar parts of that figure: thus, if one be a

semicircle, the rest should be semicircles also, but propor¬

tionally less; if one be a segment of a circle, the rest should

be similar segments of other circles ; and so for other figures.

The arches being equal at equal distances, on both sides of

the middle, is not only for the strength and beauty of the

bridge, but that the centring of the one half may serve for

the other also. But if the bridge be higher at the ends than

the middle, which is a very uncommon case, the arches

ought to increase in span and pitch from the middle towards

the ends. When the middle and ends are of different heights,

their difference however ought not to be great in proportion

to the length, that the ascent may be easy; and then also it

is more beautiful to make the top one continued curve, like

Blackfriars, than two inclined straight lines, from the ends

towards the middle, like that of Westminster bridge.

Bridges should rather be of few and large arches, than of

many and small ones, if the height and situation will allow of

it; for this will leave more free passage for the water and

navigation, and be a great saving in materials and labour, as
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there will be fewer piers and centres, and the arches them¬

selves will require less materials. And, one large single arch

only is best, when it can be executed. For the fabric of a

bridge, and the proper estimate of the expence, &c, there

are generally necessary three plans, three sections, and an

elevation. The three plans, are so many horizontal sec¬

tions, viz, the first a plan of the foundation under the piers,

with the particular circumstances attending it, whether of

gratings, planks, piles, &c: the second, is the plan of the

piers and arches, &c: the third, is the plan of the super¬

structure, with the paved road and banquet. The three

sections, are vertical ones: the first of them a longitudinal

section, from end to end, and through the middle of the

breadth: the second, a transverse one, or across it, and

through the summit of an arch: and the third also across,

but taken on a pier. The elevation, is an orthographic pro¬

jection of one side or face of the bridge, or its appearance

as viewed at a great distance, showing the exterior aspect

of the materials, and the manner in which they are worked

and decorated.—Other observations are to be seen in the

first section.

Butments, or Abutments, are the extremities of a

bridge, by which it joins to, or abuts on, the land or sides

of the river, &c. These must be made very secure, quite

immovable, and more than barely sufficient to resist the

drift of its adjacent arch. So that, if there are not rocks or

very solid banks to raise them against, they must be well

reinforced with proper walls or returns, &c. The thickness

of them, which will be barely sufficient to resist the shoot of

the arch, maybe calculated as that of a pier by prop. xi.

When the foundation of a butment is raised against a

sloping bank of rock, gravel, or good solid earth, it will

produce a saving of materials and labour, to carry the work

on by returns at different heights against it, like steps of

stairs. And if the foundation, and all the courses, parallel

to it, be laid, not horizontal, but rising backwards, so as to

be perpendicular to the springing and pressure of the arch,
H 2
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it will lie less liable to slide or be forced back by the push
of the arch.

Caisson, a kind of Chest, or flat-bottomed boat, in which

a pier is built, then sunk to the bed of the river, and the
sides loosened and taken off from the bottom, by a contri¬
vance for that purpose; the bottom of it being left under
the pier as a foundation. It is evident therefore, that the
bottoms of caissons must be made very strong, and fit for
foundations of the piers. The caisson is kept afloat till the
pier be built to about the height of low-water mark ; and,
for that purpose, its sides must either be made of more than
that height at first, or else gradually raised to it as it sinks
by the weight of the work, so as always to keep its top
above water. And therefore the sides must be made very
strong, and be kept asunder by cross timbers within, lest the
great pressure of the ambient water should Crush the sides
in, and so not only endanger the work, but also drown the
men who work within it. The caisson is made of the shape
of the pier, but some feet wider on every side, to make room
for the men to work: the whole of the sides are of two
pieces, both joined to the bottom quite around, and to each
other at the salient angles, so as to be disengaged from the
bottom, and from each other, when the pier is raised to the
desired height, and sunk. It is also convenient to have a
small sluice made in the bottom, occasionally to open and
shut, to sink the caisson and pier sometimes by, before it be
finished, to try if it bottom level and rightly; for, by open¬
ing the sluice, the water will rush in and fill it to the height
of the exterior water, and the weight of the work already
built will sink it; then, by shutting the sluice, and pumping
out the water, it will be made to float again, and the rest of
the work may be completed : but it must not be sunk except
when the sides are high enough to reach above the surface
of the water, otherwise it cannot be raised and laid dry
again. Mr. Labelye says, that the caissons in which he
built some of the piers of Westminster bridge, contained
above 1,50 load of fir timber, of 40 cubic feet each,
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and was of more tonnage, or capacity, than a 40 gun ship
of war.

Centres, and Centring, or Centering, are the timber

frames erected in the spaces of the arches, to turn them on,

by building on them the voussoirs of the arches. As the

centre serves as a foundation for the arch to be built on,

when the arch is completed, that foundation is struck from

under it, to make way for the water and navigation, and

then the arch will stand of itself from its curved figure. A

centre must therefore be constructed of the exact figure of

the intended arch, convex as the arch is concave, to receive

it on as a mould. If the form be circular, the curve is struck

from a central point by a radius: if it be elliptical, it ought

to be struck with a doubled cord, passing over two pins or

nails fixed in the foci, as the mathematicians and gardeners

describe their ellipses. Very often, in practice, an oval is

employed, as made of three circular arcs. This very nearly

resembles the true geometrical ellipsis, being formed of two

equal arcs of small circles at the extremities, having between

them a longer arch of a much larger circle, the ends of these

arches being made to butt and join to each other, that they

seem like the same curve only continued. As this mecha¬

nical oval will have nearly the same properties and effect as

the true ellipsis, and can be more conveniently worked by

the builders, as it requires the voussoirs to be cut only to

two moulds, or for two centres, while those for the true

ellipsis have them all different, we shall add in this place

some of the most approved methods of describing these ovals.

These methods indeed are, and must be, various, according

as the length or span is required to be more or less, in pro¬

portion to the breadth or height. But in all of them, the

centres of the large and small arcs must be so taken, that the

right line passing through them, may also, when continued,

pass through exactly the point where the ends of those

arches butt and join together; for by this means they will

have the same common tangent at that point, and conse-
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quently they will unite together, or run into each other,
like parts of the same curve produced.

first method.— IVhen the Length and Breadth differ not

very much.

Divide the given length or span
ab into three equal parts, at the

points c and d. With one of those
parts, cd, as a radius, and from
the two centres c, d, describe two
circles, intersecting each other in
the two points e and f. Through these two points e, f,
and the two centres c, d, draw four lines ecg, edh, fdi,

fck, cutting the two circles in the four points g, i-i, i, k.
Lastly, with one of these lines, as a radius, and from the two
centres e, f, describe the two arches gh, ki, and they will
complete the oval, forming a figure so much resembling a
true ellipse, that the eye cannot perceive the difference be¬
tween them. In this oval it is evident that the radius of
the larger circular arch is just double of that of the smaller
arches.

second method.— For a Narrower Oval.

Divide the length or span ab
into four equal parts; then, with
one of those parts as a radius, and
from the three points of division,
c, D, e, as centres, describe three
circles. Find the uppermost and
lowest points, f, g, of the middle circle; or through the
middle point d draw a perpendicular to ab, which will give
the points f, g, or construct the square cgef, •which will
give the centres of the larger arch. Through these two
points f, g, and the two c, e, draw four lines fii, fi, gk,
gl; with any one of which as a radius, and the two ccn-
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tres f, G, describe the other two arcs hi, kl, to complete
the oval; which does not rise so high as the former.

THIRD METHOD.

Other ovals may he made to

the same length, or any other

length, but rising still less in the

crown, in any degree whatever,

if, after having described the two
smaller or end circles from the

centres c and e, as in the second

method, instead of forming the

right angled triangles cge, cfe,
these be described with acute an¬

gles at f and g, by making the

equal lines cf, cg, ef, eg, longer

than before in any ratio at plea¬

sure; these being then produced

to the little circles at the four

points h, i, k, l, from the centres f, g, describe the other

two arches hi and kl, to complete the ovals, narrower and

narrower at pleasure.

The little circles also at the ends, may have their radius

taken smaller to any degree, or a less portion of the whole

span; and indeed it is evident that its radius ought always

to be less than the pitch or height of the arch.

There are other methods of making such ovals, but those

above given are some of the best. The last method is gene¬

ral too, and will serve to accommodate an oval to any length

and breadth whatever, at pleasure. Having thus described

the half of such an oval to any span and pitch proposed, for

any arch of a bridge, &c, the whole of the voussoirs may be

cut by two mold boards only, viz, one for the voussoirs for

the arch ah and ib, and the other for those in the arch hi.

But if the arch be of any other form, the several abscisses

and ordinates ought to be calculated; then their correspond¬

ed

Gr
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ing lengths, transferred to the centring, will give so many

points of the curve, and exactly by these points bending

a bow of pliable matter, the curve may be drawn close

by it.

The centres are constructed of beams, &c, of timber,

firmly pinned and bound together, into one entire compact

frame, covered smooth at top with planks or boards to place

the voussoirs on, the whole supported by offsets in the sides

of the piers, and by piles driven into the bed of the river,

and capable of being raised and depressed by wedges, con¬

trived for that purpose, and for taking them down when the

arch is completed. They ought also to be constructed of

a strength more than sufficient to bear the weight of the
arch.

In taking down the centring; it is first let down a little,

all in a piece, by easing some of the wedges; it is there let

to rest a few hours, or days, to try if the arch make any ef¬

forts to fall, or any joints open, or stones crush or crack,

&c, that the damage may be repaired before the centring is

entirely removed, which is not to be done till the arch ceases

to make any visible efforts.

In some bridges the centring makes a considerable part of

the expence, and therefore all means of saving in this article

ought to be closely attended to; such as making few arches,

and as nearly alike or similar as possible, that the centring of

one arch may serve for others, and at least that the same

centre may be used for each pair of equal arches, on both
sides of the middle.

Chest, the same as Caisson.

Cofferdam, the same as Batterdeau.

Drift, Shoot, or Thrust, of an arch, is the push or

force which it exerts in the direction of the length of the

bridge. This force arises from the perpendicular gravita¬

tion or weight of the stones of the arch, which, being kept

from descending by the form of the arch and the resistance

of the piers, exert their force in a lateral direction. This

force is computed in prop, xi, where the thickness of the
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pier is determined which is necessary to resist it; and is the

greater as the pitch is lower, cater is paribus.

Elevation, the orthographic projection of the front of a

bridge, on the vertical plane, parallel to its length. This is

necessary to show the form and dimensions of the arches, and

other parts, as to height and breadth, and therefore it has a

plain scale annexed to it, to measure the parts by. It also

shows the manner of working up and decorating the fronts of

the bridge.

Extrados, the exterior curvature or line of an arch. In

the propositions of the second section, it is the outer or upper

line of the wall above the arch ; but it often means only the

upper or exterior curve of the voussoirs.

Foundations, the bottoms of the piers, &c, or the bases

on which they are built. These bottoms are always to be

made with projections, greater or less according to the spaces

on which they are built. And according to the nature of the

ground, the depth and velocity of water, &c, the foundations

are laid, and the piers built, after different manners, either in

caissons, in batterdeaux, or on stilts with sterlings, &c; for

the particular methods of doing which, see each under its re¬

spective term.

The most obvious and simple method of laying the founda¬

tions, and raising the piers up to water-mark, is, to turn the

river out of its course above the place of the bridge, into a

new channel, cut for it near the place where it makes an el¬

bow or turn ; then the piers are built on dry ground, and the

water turned into its old course again, the new one being se¬

curely banked up. This is certainly the best method, when

the new channel can be easily and conveniently made ; but

which however is very seldom the case.

Another method is, to lay only the space of each pier dry,

till it be built, by surrounding it with piles and planks driven

down into the bed of the river, so close together as to exclude

the water from coming in ; then the water is pumped out of

the inclosed space, the pier built in it, and lastly the piles and

planks drawn up. This is cofferdam work; but it evidently
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cannot be practised when the bottom is of a loose consist¬

ence, admitting the water to ooze and spring up through it.

When neither the whole nor part of the river can be easily

laid dry, as above, other methods are to be used ; such as, to

build either in caissons or on stilts, both which methods are

described under their proper words ; or yet by another me¬

thod, which hath, though seldom, been sometimes used, with¬

out laying the bottom dry, and which is thus: the pier is

built upon strong rafts or gratings of timber, well bound to¬

gether, and buoyed up on the surface of the water by strong

cables, fixed to other floats or machines, till the pier is built;

the whole is then gently let down to the bottom, which must

be made level for the purpose. But of these methods, that

of building in caissons is the best.

But before the pier can be built in any manner, the ground

at the bottom must be well secured, and made quite good and

safe, if it be not so natural!)'. The space must be bored into,

to try the consistence of the ground ; and if a good bottom

of stone, or firm gravel, clay, &c, be met with, within a mo¬

derate depth below the bed of the river, the loose sand, &c,

must be removed and digged out to it, and the foundation

laid on the firm bottom, on a strong grating, or base of tim¬

ber, made much broader every way than the pier, that there

may be the greater base to press on, to prevent its being sunk.

But if a solid bottom cannot be found at a convenient depth

to dig to, the space must then be driven full of strong piles,

the tops of which must be sawed off level, some feet below

the bed of the water, the sand having been previously digged

out for that purpose ; and then the foundation, on a grating

of timber, laid on their tops as before. Or, when the bottom

is not good, if it be made level, and a strong grating of tim¬

ber, two, three, or four times as large as the base of the pier,

be made, it will form a good base to build on, its great size

in a great measure, preventing it from sinking. In driving

the piles, the method is, to begin at the middle, and proceed

outwards, all the way to the borders or margin : the reason

of which is, that if the outer piles were driven first, the earth
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of the inner space would he thereby so jammed together, as

not to allow the inner piles to be driven at all. And besides

the piles immediately under the piers, it is also very prudent

to drive in a single, double, or triple row of them, around

and close to the frame of the foundation, cutting them off a

little above it, to secure it from slipping aside out of its place,

and to bind the ground under the pier the firmer. For, as

the safety of the whole bridge depends much on the founda¬
tions, too much care cannot be used to have the bottom made

quite secure.

Jettee, the border made around the stilts under a pier;

being the same with Sterling.

Impost, is the part of the pier on which the feet of the

arches stand, or from which they spring.

Keystone, the middle voussoir, or the arch stone in the

crown, or immediately over the centre of the arch. The

length of the keystone, or thickness of the arc'nivolt at top,

is allowed to be about l-15th or l-16th of the span, by the
best architects.

Orthography, the elevation of a bridge, or front view,

as seen at a great distance.

Parapet, the breast wall made on the top of a bridge, to

prevent passengers from falling over. In good bridges, to

build the parapet only a little part of its height close or solid,

and on that a balustrade to above a man’s height, has an ele¬

gant and useful effect.
Piers, are the walls built for the support of the arches,

and from which they spring as their bases. These ought to

be built of large blocks of stone, solid throughout, and

cramped together with iron, or otherwise, which will make

the whole like one solid stone. Their faces or ends, from

the base up to high-water mark, ought to project sharp out

with a salient angle, to divide the stream. Or perhaps the

bottom ot the pier should be built flat or square up to about

half the height of low-water mark, to allow a lodgment against

it for the sand or mud, to cover the foundation; lest, by being

left bare, the water should in time undermine, and so ruin or
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injure it. The best form of the protection for dividing the

stream, is the triangle; and the longer it is, or the more acute

the salient angle, the better it will divide it, and the less will

the force of the water be against the pier ; but it may be suf¬

ficient to make that angle a right one, as it will make the

work stronger, and in that case the perpendicular projection

will be equal to half the breadth or thickness of the pier. In

rivers on which large heavy craft navigate, and pass the

arches, it mav perhaps be better to make the ends semicircu¬

lar ; for though it docs not divide the water so well as the

triangle, it will both better turn off and bear the shock of the
craft.

The thickness of the piers ought to be such, as will make

them of weight or strength sufficient to support their interja¬

cent aixh, independent of any other arches. The thickness,

in most cases of practice, may be made about i of the span of

the arch. And then, if the middle of the pier be run up to its

full height, the centring may be struck, in order to be used in

another arch, before the hanchcs are filled up. The whole

theory of the piers may be seen in the third section. They

ought to be made with a broad bottom on thefoundation, and

gradually diminished in thickness bv offsets, up to low-water

mark. The methods of laying their foundations, and build¬

ing them up to the surface of the water, are given under the
word Foundation.

Piles, arc timbers driven into the bed of the river for va¬

rious purposes, and are either round, square, or flat like

planks. They may be of any wood which will not rot under

water, but elm, oak, and fir are mostly used, especially the

latter, on account of its length, straightness r and cheapness.

They are shqd with a pointed iron at the bottom, the better

to penetrate into the ground ; and are bound with a strong

iron band or ring at top, to prevent them from being split

by the violent strokes of the ram by which they are driven

down. It is said, that the stilts, or piles, under London-

bridge, are of elm, which lasts a long time in the water.

Piles are either used to build the foundations on, or are
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driven about the pier as a border of defence, or to support

the centres on ; and in this case, when the centring is re¬

moved, they must either be drawn up, or sawed off very low

under water ; but it is perhaps better to saw them off, and

leave them sticking in the bottom, lest the drawing of them

out should loosen the ground about the foundation of the

pier. Those to build on, are either such as are cut off by the

bottom of the water, or rather a few feet within the bed of

the river; or else such as are cut off at low-water mark, and

then they are called stilts. Those to form borders of defence,

are rows driven in close by the frame of a foundation, to keep

it firm ; or else they are to form a case or jettee about the

stilts, to keep within it the stones that are thrown in to fill it

up ; in this case, the piles are grooved, driven at a small dis¬

tance from each other, and plank piles let into the grooves

between them, and driven down also, till the whole space is

surrounded. Besides using this for stilts, it is also sometimes

necessary to surround a stone pier with a sterling or jettee,

and fill it up with stones to secure an injured pier from being

still more damaged, and the whole bridge ruined. The piles

to support the centres may also serve as a border of piling to

secure the foundation, cutting them off low enough after the
centre is removed.

Pile Driver, is an engine for driving down the piles. It

consists of a large ram or square block of iron, sliding per¬

pendicularly down between two guide posts; which being

drawn up to the top of them, and there let fall from a great

height, it comes down on the top of the pile with a violent

blow. It is worked either by men or horses, and either with

or without wheel work. That which was used at the build¬

ing of Westminster-bridge, is perhaps one of the best kind.

Pitch, of an arch, is the perpendicular height from the

spring, or impost, to the keystone.

Plan, of any part, as of the foundations, or piers, or su¬

perstructure, is the orthographic projection of it on a plane

parallel to the horizon.

Push, of an arch, the same as drift, shoot, or thrust.
VOL. i. I
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Salient Angle, of a pier, is the. projection of the end

against the stream, to divide it. The right-lined angle best

divides the stream, and the more acute the better for that

purpose ; but the right angle is generally used, as making

the best masonry. A semicircular end, though it does not

divide the stream so well, is sometimes better in large navi¬

gable rivers, as it carries the craft the better off, or bears their
shocks the better.

Siioot, of an'arch, is the same as drift, thrust, &c.

Span, of an arch, is the extent or width at the bottom, or

on the level at its springing.

Spandrels, or Spandrils, are the spaces about the flanks

or haunches of the arch, above the curve or intrados.

Springers, are the first or lowest stones of an arch, being

those at its feet, bearing immediately on the impost.

Sterlings, or Jettees, a kind of case, made of stilts, &c,

about a pier, to secure it. It is particularly described under
the next word Stilts.

Stilts, a set of piles driven into the space intended for

the pier, whose tops being sawed level off about low-water

mark, the pier is then raised on them. This method was

formerly used, when the bottom of the river could not be

laid dry ; and these stilts were surrounded, at a few feet dis¬

tance, by a row of piles and planks, &c, close to them like a

coffer-dam, and called a sterling or jettee ; after which, loose

stones, &c, are thrown or poured down into the space, till it

be filled up to the top, by that means forming a kind of pier

of rubble or loose work, which is kept together by the sides

of the sterlings : this is then paved level at the top, and the

arches turned upon it. This method was formerly much used,

most of the large old bridges in England being constructed

in that way; such as London-bridge, Newcastle-bridge, Ifo-

chester-bridge, &c. But the inconveniencies attending it are

so great, that it is now quite exploded and disused : for, be¬

cause of the loose composition of the piers, they must be made

very large or broad, otherwise the arch would push them over,

and rush down as soon as the centre should be drawn: which
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great breadth of piers and sterlings so much contracts the
passage of the water, as not only very much incommodes the
navigation through the arch, from the fall and quick motion
of the water, but from the same cause also the bridge itself
is in much danger, especially in time of floods, when the
quantity of water is too much for the passage. Add to this,
that besides the danger there is of the pier bursting out the
sterlings, they are also subject to much decay and damage
by the rapidity of the water, and the craft passing through
the arches.

Thrust, the same as drift, shoot, &c.
Voussoirs, the stones which immediately form the arch,

their under sides constituting the intrados or soffit. The
middle one, or keystone, ought to be, in length, about ^ or
rV of the span, as has been observed ; and the rest should in¬
crease in size all the way down to the impost; the more they
increase the better, as they will the better bear the great
weight which rests upon them, without being crushed, and
also will bind the firmer together. Their joints should also
be cut perpendicular to the curve of the intrados.

TRACT II.

QUERIES CONCERNING LONDON BRIDGE: WITH THE ANSWERS,

BY GEORGE DANCE, ESQ.

AS an Appendix to the foregoing Tract, on the Principles
of Bridges, a few smaller papers, on kindred subjects, are
inserted in this and some of the Tracts immediately follow¬
ing. The present paper is one, among several of a curious
nature, which I purchased at the sale of Mr. Robertson’s books,
in the year 1116 , and appears to contain circumstances of too
much importance to be kept private. It seems to have ori-
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ginatcd from enquiries formerly made, for improving the

bridge and the port of London, in the year 1746. It consists

ofqueries proposed by the magistrates of the city; and answers

to those queries, by Mr. George Dance, the Surveyor Gene¬

ral of all the works of the city of London, who was the father

of that excellent architect the present City Surveyor. It

seems also that the queries had been proposed to the public

in general, to solicit answers from any ingenious engineers

or architects; for the paper remarks that,

“ The persons who are to answer these queries, may add

to their answers what further remarks and observations they

shall think proper, to the same purpose as these queries.—In

the middle of every arch there are driven down piles, called

dripshot piles, in order to prevent the waters from gullying

away the ground.—I am of opinion, from the nature of the

work, that the bridge was not so wide originally as it now is;

and that the points of the piers have been much extended,

in order to erect houses thereon.—I observe likewise, that in

some of the piers, there are fresh casings of stone, before the

original ashler.

“ July the 9th, 1746. George Dance.”

“ Query 1 . What are the shapes and dimensions of the

stone piers, the sterlings, and the openings at high and low

water r N. B. This will be best answered by figured

sketches, or plans, correctly laid down from an exact men¬

suration by a scale, provided that scale be not smaller than
8 or 10 feet to an inch.”

“ Answer. I have described the shapes and dimensions of

the stone piers, sterlings, and openings at high and low water,

in a figured plan, which I delivered to Mr. Comptroller.”
“ Query 2. What are the depths of water, just above,

under, and just below the arches, or locks, at a common low

water? N. B. These depths may be marked on the plans or
sketches.”

“ Answer. The depth of water, beginning at the south

ejul of the bridge, is as follows; viz.
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On the west side.

ft. inc.

1st lock 16 0 .

2d . . 14 6 .

3d . . 22 3 .

4th . . 14 0 .

5th . . 18 9 .

6th . . 17 7 .

7th . . 18 1 .

8th . . 25 1 .

9th . 17 8 .

10th . . 21 2 .

11th . . 18 11 .

12th . . 17 0 .

13th . . 24 6 .

14th . . 22 3 .

15th . . 23 9 .

16th . . 19 9 .

17 th . . 20 3 .

18th . . 19 4 .

19th . . 10 10 .

20th . . 6 7 .

I have likewise described

said.”

Under the arch. On the east side.
ft. inc. ft. inc.

. . 5 9 . 8 10

. . 9 0 . 10 4

. . 3 0 . 14 0

. . 7 0 . 15 7

. . 10 3 . 18 7

. . 8 7 . 15 11

. . 8 10 . 15 11

. . 9 2 . 18 3

. . 5 9 . 18 6

. . 5 6 . 17 8

. . 3 5 . 12 8

2 4 . 22 0

. . 8 9 . 20 0

. . 9 0 . 17 4

, . 6 9 . 20 7

. . 6 11 . 21 10

. . 4 6 . 21 10

. . 7 9 . 14 1

. . 4 0 . 13 10

. . 6 1 . 10 10

le dimensions in the plan afore-

“Query 3. At what height, above low-water mark, and

at what depth below the surface of the sterlings, is the under¬

bed, or lower side of the first course of stones?”
“ Answer. The height of the underbed of the first course

of stones, is various: some being 2 feet 4 inches, some 1 ft.

11 inc., some 1 ft. 10 inc., some 1 ft. 3 inc., some lft. 1 inc.

above low-water mark; and some are 6 feet, some 5 ft. 8 inc.,

some 4 ft. 6 inc-, some 4 ft. 1 inc., and .some 4 feet below the

surface of the sterlings. These are the dimensions, as far as

I am able to get them : there being no opportunity to make

observations but when a breach happens to any of the piers.”
“ Query 4. What is there between the stones and the

heads of the piles ? Is it one row of planks only; or two rows,
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crosslaid; oi' timber: what wood are they made of, and what

are their dimensions or scantlings?”

“ Answer. In general I find nothing between the. stones

and piles, but sometimes pieces of plank, mostly of oak, and

a little of elm, some of which is 6 inches and 4 inc. in thick¬

ness ; which I apprehend were not originally placed there,

but only when reparations have been made, on which account

they were fixed, in order to wedge up tight to the stone¬

work ; it being impossible to make sound work in that case

by any other method.”

“ Query 5. Are the piles which surrounded the founda¬

tions of the piers, before the sterlings were added, square or

round, rough or hewn, driven as close as possible, or at a

distance? If they touch one another, are they fastened to¬

gether with a dovetail, or by an}' other contrivance of the

same nature; and if they do not touch, at what distance are

they at a mean?”

“ Answer. These piles are round, rough, and unhewn :

they are driven close, and touch one another: they do not

seem to be fastened together by any contrivance, except that

some have planks upon them, and some have none. But

these observations I have made where breaches have hap¬

pened, so that one might get 1, 2, or 3 feet within the sur¬

face of the piers: but how they are in the middle of the piers,

is impossible to determine.”
“ Query 6. Are the heads of those surrounding piles fas¬

tened together by any kirb or capcile ? If there be any, let

it be described, and its dimensions, by a figured sketch.”

“ Answer. They are fastened by no kirb or capcile.—■

There are only planks upon some of them, as I mentioned in
the former answer.”

“ Query 7. Are the inside piles, on which the founda¬

tions of the piers are laid, round or square, hewn or rough,

very close, or at what distance at a mean ; of what timber,

and size; are they shod or not?”

“ Answer. This query is very difficult to answer. I can

only say, that I have had an opportunity to examine one
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pier, about 7 feet within. It is the south pier of the dam

lock ; a great part of which was undermined, by some of the

sterlings being carried away, and leaving it defenceless there.

I observe that the piles are round, rough, unhewn, and driven

close together ; and they are chiefly elm, of about one foot

diameter. Some of these piles, being taken up, were shod

with iron ; and I think it is reasonable to suppose they are
all so.”

“ Query 8. Whether the foundations of the piers, before
the sterlings were added, extended beyond the naked line of
the stone-work: and if so, as it is most likely, describe how
much, at a mean, and the manner, by a figured sketch ?”

“ Answer. There is, to every pier, a setoff, or foundation,

which extends about 7 inches beyond the naked line of the

pier ; and that setoff or foundation is of stone. But I am of

opinion that sterlings were fixed at the first erecting of the

bridge ; because I think it impossible for the piers to stand

long without some such defence. But whether they were so

much extended, or in the same shape they are now, is not

easy to determine.”
“ Query 9. Are the piles, that are under the foundations

of the piers, much decayed and galled by the action of the

currents of waters, before the sterlings were added ?”

“ Answer. All those piles under the foundations of the

piers, which I ever saw, are very sound at heart. But about

one inch of their surface hath been decayed : but these were

piles which had been for some time exposed to the violence

of the flood, by the breaches made in the sterlings. But I

apprehend that cannot be the case with the piles which go

farther under, or in the middle of the piers; because water

cannot act upon them.”

“ Query 10. What is the inside of the stone piers made

of? whether of the same’sort of stone as the outside; cut

and laid regular, or only common rubble stones, laid in veiy

bad mortar, as it is in Rochester-bridge ?”

i( Answer. I have seen, in several breaches, the texture
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of the piers: and by them it appears to me, that the insides

of the said piers are filled with rubble; and the external faces

are formed with ashler laid in courses: but the rubble ap¬

pears to be laid with good mortar.

“ George Dance.”

TRACT in.

EXPERIMENTS and observations to be made about

LONDON BRIDGE.

THIS is another of the papers, relating to the state of

London bridge, bought at the sale of the late Mr. John

Robertson’s books. It appears to be an answer given to

certain queries, addressed to the Royal Society from the

Committee of Common Council of the City of London. This

answer is signed by the President, the Vice-Presidents, and

several other respectable members of the Royal Society; viz.

by Martin Folkes, esq. the president, and by Wm. Jones

(father of the late Sir Wm. Jones), James Jurin, M. D., Geo.

Lewis Scott, esq., Benj. Robins, esq., and John Ellicott, esq.,

all names highly respectable for their eminent scientific la¬

bours.—Their report is in the following words:
“ In order to answer the queries proposed by the Com¬

mittee, with regard to the alterations of London bridge, we

apprehend it will be necessary,
“ 1st. To have an exact level taken, between some fixed

point on the west side of London bridge, and another point

on the east side of Westminster bridge ; as also, to take the

like level between some fixed point on the cast side of London

bridge, and another point at some convenient place about 2

miles below the bridge.

“2. To take the perpendicular height of each of those 4
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points above the surface of the river at low-water, and like¬

wise at every quarter of an hour before and after low-water ;

and to observe the time when the low-water happens at those

places; and the same for high-water.
“ 3. To take the height of the fixed point on the west side

of London bridge, above the surface of the river, at the low

still water, and high still water under the drawbridge, with
the time of each.

“ 4 . To take the height of the same point, above the sur¬
face of the river, just above the sterling, at the time of low-

water below bridge.

“ 5. To take the depth of the water in all the gullets, or

at least in that under the drawbridge, at the time of low still
water.

“ 6 . To ascertain in how many of the arches the dripshot
piles are driven ; how close together; and how far the tops
of them are below low still water mark.

“ 7. To know particularly at what time the sterlings are

first intirely covered, and when first intirely uncovered.
“ 8. To know exactly the time of low and high water

mark, and the height the water rises to, at the Nore, Graves¬

end, and Woolwich.
“ 9. That all the foregoing observations of the tides, be

made at some one spring tide, and likewise at some one neap
time. Was signed,

M.Folkes; Wm. Jones; Jas. .Turin; Geo. L. Scott; Benj.

.Robins; John Ellicott.”
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TRACT IV.

OX THE CONSEQUENCES TO THE TIDES IN THE RIVER

THAMES, BY ERECTING A NEW BRIDGE AT LONDON.

BY MR. JOHN ROBERTSON.

WHILE it was in contemplation to erect tlie new bridge

over the river at Blackfriars, there was much public conversa¬

tion and speculation on the probable effects of such erection,

relative to the tides in the river, and other matters connected

with it. On this occasion, the magistrates of the city of

London consulted many scientific men and practical engi¬

neers, touching those points. Among others, they requested

the advice and opinion of Mr. John Robertson, then master

of the Royal Mathematical School in Christ’s Hospital, by a

special letter from the Town Clerk, as follows.

“ To Mr. Robertson at Christ's Hospital.

tl Sir,—The Committee of Common Council appointed to

consider, whether the Navigation of the river Thames will

in any and what manner be affected by a new Bridge, intend

to meet at Guildhall, on Thursday the 12th instant, at 10

o’clock in the forenoon, and desire you will be so kind as to

favour them with your company at that time, in order to give

them your opinion and assistance therein. I am, Sir,

“ Your most obedient, humble Servant,
“ James Dobson.”

Town Clerk’s Office, Guildhall, 5 Dec. 1T54.

Mr. Robertson's Answer.

“ Before I deliver my opinion concerning the question

proposed, 1 think it necessary to premise some few principles
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relating to the Tides, and particularly those which affect the

river Thames; because a just solution to this question depends

chiefly on the phenomena of the tides.
“ 1. It is now well known that the tides are regulated by the

motion of the moon; and that this planet takes something less

than 25 hours,between the times of its departing from any me¬

ridian, to its return to the same; in which time she causes two

floods and two ebbs; so that in most parts of the earth there is

a new time in every revolution of about 12 hours and a half.
“ 2. There is a flood tide which flows round the northern

parts of Europe, and thence proceeds southward through the

western ocean : a branch of this tide runs southward along

the German sea, and makes high water to all the eastern

coasts of Great Britain, in a successive order, in regard to the

time the moon has passed the meridians of those places: this

branch of the tide runs but a little to the southward of the

mouth of the river Thames.

“ 3. While the said branch is running down the German

sea, the grand body of the tide is marching southward along

the western coasts of Ireland,and thence flowing partly south¬

ward, partly south-eastward ; one branch runs up St. George’s

Channel, and another branch flows eastward, up the English

Channel, and makes, in a successive order of time, the high

waters upon all the southern coasts of England : this branch

extends something to the northward of the mouth of the
river Thames.

“ 4. The said tides, meeting near the mouth of the river

Thames, contribute to send a powerful tide up that river;

and so long as the said southern and northern branches con¬

tinue to flow, so long will the waters continue to accumulate

at the mouth of this river, and make their way up it, in order
to restore the waters to a level.

“ 5. The flowing of the tide up the river Thames is greater

or less, in proportion only to the accumulation of the waters

at its mouth ; and therefore, in the common course of things,

there is, relative to the moon’s age, a fixed quantity of tide

which the river Thames is to receive; and therein to be
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disposed of in the best manner that its situation will
admit,

“ 6. On account of the water being confined between the

banks of the river, the tide must flow up higher, in propor¬

tion as the river becomes narrower, till the fixed quantity is

received. But then it must be observed, that when the tide

acts against the stream of a river, the tide up that river be¬

comes progressively stronger and stronger, for a time, ac¬

cording as the velocity of the natural stream is checked; and

in this manner the river waters themselves by degrees obtain

a contrary direction, and run up with the tide, and so may

be considered as waters coming in with the tide of flood,

and part of the fixed quantity which that river is to receive.

“ 7. The return of the tide, or the time of ebbing, is not

every where performed in the same time as it took to flow

in. For, in the ebb tide there is to be discharged, not only

the waters which were brought in by the tide, but also all the

river water which has been retarded by it.

“ 8. Whatever obstacles are laid in the way of the tide,

across any channel, the utmost rise, or the high-water mark,

at different times, will be respectively the same : because the

water will continue to rise till the fixed quantity of tide is

disposed of, and no longer. And, in like manner, the low-

water mark will not be affected by such obstacles. Indeed,

between the limits of high and low-water marks, the water

will be raised higher against those obstacles, both in the flood

and ebb tides, than they would be in those places, were the

obstacles removed. For, as the velocity of the current must,

on both sides of the obstacle, be equal, in order for one part

of the water to run away, as fast as the successive ones fol¬

low ; therefore the waters must rise on that side of the ob¬

stacle which they run against, till they be so high, that by

their fall they acquire a velocity sufficient to carry them off,

as fast as they arise at the obstacle.

“ These principles being premised, the solution to the

question proposed naturally follows. And in order to this,

let us for the present suppose, that between London and
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Westminster bridges, another bridge were built; and to show

what might be the consequences in the worst case, let us sup¬

pose it occasioned as great a fall as at London bridge.

“ Consequences during the time of the Flood Tide.

“ The flood tide, meeting with the obstruction of the new

bridge, would accumulate on the eastern side thereof, much

in the same manner as it does now at London bridge : this

would cause the flood tide at first to run through London

bridge with less velocity than it docs at present. For, the

new bridge, by penning up the water, would throw some of

it back again, towards London bridge; and consequently the

waters on the eastern side of London bridge, would rise higher

than they now do, that they might run off with the same ve¬

locity, with which they came to the bridge.

“ The tide would not run up the river so far as it now

does; and consequently the tide of flood ■would be sooner

spent, than at present: nevertheless the rise of the waters

would not, at any place, be lessened beneath the present

standard. For, the more obstacles any moving body has to

encounter with, the sooner will its motion be destroyed. But

the fixed quantity of the tide being in no wise diminished,

the waters must necessarily rise as many feet high, either

above or below the bridges, as they would, were there no

bridges over the river.

“ Consequences during the Tide of Ebb.

“ The ebb tide would be obstructed, on the wqjftern side

of the new bridge, in the same manner as it is now at London

bridge; but the rise of the water at the new bridge would be

highest*. For, as London bridge, by penning up the water,

* It is manifest that all this reasoning, by Mr. Robertson, we

must remember, has been on the supposition, that the new bridge

would be built with piers and sterlings, like London bridge, and so
cause a similar obstruction to the currents.
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would cause it, at the beginning of the ebb, to revert or fall

back again towards the new bridge: consequently the waters

on the western side of the new bridge must rise higher, on

account of the pen below, that they might run away as fast

as they were succeeded by the following water.
“ The length of the tide of ebb would be greater than it

is at present, by as much time as the tide of Hood would be

shortened. For though the same quantity of flood tide, being

jroured through London bridge, would spend its force sooner

than at present, yet the time of the return of the aggregate

of the flood tide, and the retarded land waters, would be

greater ; in proportion as the obstacles, they would have to

pass by, were increased.

“ From what has been said, I apprehend it is evident, that

a new bridge, built between London and Westminster bridges,

cannot alter the present high and low-water marks ; even

though this new bridge should be so constructed, as to oc¬

casion a fall of the waters, equal to what they have at London
bridge.O

“ But experience has shown, how a bridge may be built,

so as to cause no sensible fall: and were such a bridge sub-

stituted in the place of that we have before supposed, the

consequences already remarked would become so inconsider¬

able, in respect to the tides, that I believe, and it is my opi¬

nion, that there would ensue no apparent alteration in the

present state of the navigation of the river Thames, either
above or below London bridge.”©

John Robertson.



TRACT V.

ANSWERS TO QUESTIONS, PROPOSED BY THE SELECT COM¬

MITTEE OF PARLIAMENT, RELATIVE TO A PROPOSAL FOR

ERECTING A NEW IRON BRIDGE, OF A SINGLE ARCH

ONLY, OVER THE RIVER THAMES, AT LONDON, INSTEAD

OF THE OLD LONDON BRIDGE.

AMONG the various means of improving the port of Lon¬

don, which have lately been devised, was one by removing the

old inconvenient London bridge, and erecting another in its

stead, which might be more commodious, and better accord¬

ing with the improved state of the port. Several projects

were given in to the Committee of Parliament, appointed to

consider those improvements, among which was one pro¬

posed by Messrs. Telford and Douglass, to be of a single

arch, made of cast iron, which the Committee so far noticed,

as to order engravings to be made of the design, and, for

more safety, to issue a set of questions, concerning this ex¬

traordinary project, to he sent to several ingenious profes¬

sional and literary men, requesting their answers to all or any

of them, within a limited time.

The present tract contains my answers, which were de¬

livered in, to those questions, and for which I was honoured

with the thanks of the Committee ; which answers are here

given as a proper appendix, among other articles, to the essay

on bridges in the first Tract.

The situation proposed for this new bridge, is about 200

yards above the old bridge, which brings it to run nearly in

a line with the Royal Exchange, and with the wide part of

the main street of the Borough of Southwark. This is the

narrowest part of the river, being here but 900 feet over.

It was also proposed to narrow the river still more in this
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part, by building strong abutments of masonry, running 150

feet into the river on each side, against which to abut the

proposed arch of cast iron, which consequently was to be of

600 feet span, extending across the river at one stretch. The

height of the arch at the crown or key piece, was to be 65

feet above high-water, to allow ships of considerable burden,

with their top masts only struck, to sail through beneath it,

up to Blackfriars bridge; to load or unload by the side of

new wharfs, to be built into the river, on both sides of it,

all the way up to Blackfriars. The width of the bridge, to

be 45 feet in the middle, and from thence widening all the

way, in a curved form, till it should become enlarged to 90
feet at the extremities.

The letter of the Committee is here given first, with the

set of questions, followed by the answers as delivered in con¬

sequence of that requisition.

TPIE ORDER OF THE COMMITTEE.

“ Luna; 23 die Martii 1801,

“ At the Committee for the further improvement of the Port

of London ;

“ Charles Abbot, Esq. in the Chair :

“ Ordered, That the Print, Drawings, and Estimates of

tin Iron Bridge, of a single arch, 600 feet in the Span,

together with the annexed Queries, be sent to Dr. Hutton,

requesting that he will, on or before the 25th of April next,

transmit to Mr. Samuel Gunnell, the Cfcrk to this Committee,

his opinion upon all of these queries, or such of them as he

may be disposed to consider.

“ Charles Abbot, Chairman*
“ To Dr. Hutton ,

<£ Military Academy , IVoolunchT
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“ Getting out and securing the foundation of

the two abutments ’

432,000 cubic feet of granite or other hard stone 86,400

20,029 cubic yards of brickwork, at 20s. - - 20,029

“ Questions respecting the Construction of the annexed Plate

and Drawings of a Cast Iron Bridge of a Single Arch, 600

feet in the Span, and 65 feet Rise.

“ 1. What parts of the bridge should be considered as

wedges, which act on each other by gravity and pressure,

and what parts as weight, acting by gravity only, similar to

the walls and other loading, usually erected upon the arches

of stone bridges.—Or, does the whole act as one frame of

iron, which can only be destroyed by crushing its parts ?

“ 2. Whether the strength of the arch is affected, and in

what manner, by the proposed increase of its width towards

the two extremities, or abutments ; when considered verti¬

cally and horizontally. And if so, what form should the

bridge gradually acquire?

“ 3. In what proportions should the width be distributed

from the centre to the abutments, to make the arch uniformly

strong ?

“ 4. What pressure will each part of the bridge receive,

supposing it divided into any given number of equal sections,

the weight of the middle section being given. And on what

parts, and with what force will the whole act upon the abut¬
ments ?

19,200 cubic feet of timber in tyes, at 3s. 6d.

6,500 tons of cast iron, including scaffold 130,000

3,360

and putting up, at 20l.

Making roadways and footpaths 2,500

.£262,289”

VOL. I.
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“ 5 . What additional weight will the bridge sustain ; and
what will-be the effect of a given weight placed upon any of
the before mentioned sections ?

“ 6 . Supposing the bridge executed in the best manner,
what horizontal force will it require, when applied to any
particular part, to overturn it, or press it out of the vertical
plane ?

“ 7. Supposing the span of the arch to remain the same,
and to spring ten feet lower, what additional strength would
it give to the bridge.—Or, making the strength the same,
what saving may be made in the materials.—-Or, if instead of
a circular arch, as in the plate and drawings, the bridge should
he made in the form of an elliptical arch, what would he the
difference in effect, as to strength, duration, convenience, and
expences ?

“ 8. Is it necessary or adviseable, to have a model made
of the proposed bridge, or any part of it, in cast iron. If
so, what are the objects to which the experiments should he
directed ; to the equilibration only, or to the cohesion of the
several parts, or to both united, as they will occur in the in¬
tended bridge?

9 . Of what size ought the model to be made, and what
relative proportions will experiments, made on the model,
bear to the bridge, when executed?

“ 10 . By what means may ships be best directed in the
middle stream, or prevented from driving to the side, and
striking the arch, and what would be the consequence of
such a stroke?

“ II. The weight and lateral pressure of the bridge being
given, can abutments be made in the proposed situation for
London bridge, to resist that pressure?

“ 12. The weight and lateral pressure of the bridge being
given, can a centre or scaffolding be erected over the river,
sufficient to carry the arch, without obstructing the vessels
which at present navigate that part?

“ 13. Whether it would be most adviseable to make the
bridge of cast and wrought iron combined, or of cast iron
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only. And if of the latter, whether of the hard white metal,

or of the soft grey metal, or of gun metal?

“ 14. Of what dimensions ought the several members of

the iron work to be, to give the bridge sufficient strength?

“ 15. Can frames of cast iron be made sufficiently correct,

to compose an arch of the form and dimensions as shown in

the drawings No. 1 and 2, so as to take an equal bearing as

one frame.; the several parts being connected by diagonal

braces, and joined by an iron cement, or other substance ?

N. B. The plate is .considered as No. 1.

“ 16. Instead of casting the ribs in frames, of considerable

length and breadth, as shown in the drawing, No. 1 and 2,
would it be more adviseable to cast each member of the ribs

in separate pieces of considerable lengths, connecting them

together by diagonal braces, both horizontally and vertically,
. as in No. 3 ?

“ 17. Can an iron cement be made, which shall become

hard and durable. Or can liquid iron be poured into the

joints?
“ 18 . Would lead be better to use in the whole or any

part of the joints?
“ 19 . Can any improvementbe made in the plan, so as to

render it jnore substantial and durable, and less expensive.

And, if so, what are those improvements?

“ 20. Upon considering the whole circumstances of the

case, and agreeable to the resolutions of the Committee, as

stated at the conclusion of their third report: Is it your

opinion, that an arch of 600 feet in the span, as expressed

in the drawings produced by Messrs. Telford and Douglass,

or the same plan, with any improvements you may be so good

as to point out, is practicable and adviseable, and capable of

being made a durable edifice ?
“ 21 . Does the estimate communicated herewith, accord¬

ing to your judgment, greatly exceed or fall short of the

probable expence of executing the plan proposed, specify¬

ing the general grounds of your opinion ?
“ The Resolutions referred in No. 20, are as follotv,

K 2
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“ 1st. That it is the opinion of this Committee, that it is

essential to the improvement and accommodation of the port

of London, that London Bridge should be rebuilt, upon such

a construction, as to permit a free passage at all times of the

tide, for ships of such a tonnage, at least, as the depth of the

river would admit of, at present, between London Bridge and

Blackfriars Bridge.
“ 2d. That it is the opinion of this Committee, that an

Iron Bridge, having its centre arch not less than 65 feet high

in the clear, above high-water mark, will answer the intended

purpose, and at the least expence.

“ 3d. That it is the opinion of this Committee, that the

most convenient situation for the new bridge, will be imme¬

diately above St. Saviour’s Church, and upon a line from

thence to the Royal Exchange.
“ Charles Abbot.

“ To Dr. Hutton, Woolwich .”

The Answers to the foregoing Queries, were as follow;

where each question is repeated immediately before its an¬

swer, to preserve the connection more close and imme¬
diate.

*

Answers to the Questions concerning the proposed New Iron

Bridge, of one arch, 600 feet in the span, and 65 feet high.

Quest. 1 . What parts of the bridge should be considered

as wedges, which act on each other by gravity and pressure,

and what parts as weight, acting by gravity only, similar to

the walls and other loading usually erected upon the arches

of stone bridges. Or, does the whole act as one frame of

iron, which can only be destroyed by crushing its parts ?

Answer. It is my opinion, that all the small frames or

parts ought to be so connected together, at least vertically,

as that the whole may act as one frame of iron, which can

only be destroyed by crushing its parts.—For, by this means,

the pressure and strain will be taken off from every particular
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arch or course of voussoirs, and from every single voussoir

or frame, and distributed uniformly throughout the whole

mass. Hence it will happen, that any particular part which

may by chance be damaged, or be weaker than the rest, will

be relieved, and prevented from a fracture, or, if broken,

prevented from dropping out and drawing other parts after

it, which may be next to it, either above or on the sides of

it. By this means also, the effect of any partial or local

pressure, or stroke, or shock, whether vertical or horizontal,

will be distributed over or among a great number of the ad¬

jacent parts, and so the effect be broken and diverted from

the immediate place of action. By this means also will be

obviated, any dangerous effects arising from the continual

expansion or contraction of the metal, by the varying tem¬

perature of the atmosphere, in consequence of which the

bridge will, all together, in one mass, in a small and insensible

degree, keep perpetually and silently rising or sinking, as the

arch lengthens by the expansion, or shortens by the contraction

of the metal.—This unity of mass will be accomplished, by

connecting the several courses of arch pieces together verti¬

cally, or the lower courses to the next above them, and also

by placing the pieces together in such a way as to break

joint, after the manner of common or wall masonry, and that

perhaps in the longitudinal and transverse joints, as well as
the vertical ones.

Quest. 2. Whether the strength of the arch is affected,

and in what manner,, by the proposed increase of its width

towards the two extremities, or abutments; when considered

vertically, and horizontally ; and if so, what form should the

bridge gradually acquire ?

Answer. There can be no doubt but the bridge will be

(greatly strengthened by an increase of its width towards the

two extremities, or abutments, especially if the courses or

parts be connected together in the manner above mentioned,

in the answer to the first question. For thus, the extent of

the base of the arch at the impost being enlarged, the strength
or resistance of the abutment will be increased in a much

higher degree than the weight and thrust of the arch, and
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consequently will resist and support it more firmly. The

arch itself will thus also acquire a great increase of strength

and stability, both from the quantity and disposition of the

materials, as well vertically as horizontally, by which, in the

latter direction in particular, the arch will be better enabled

to preserve its true vertical position, and to resist the force

or shock of any thing striking against it in the horizontal di¬

rection. And, for the better security in these particulars,

considering the immense stretch of the arch, it will perhaps

be adviseable to enlarge the width in the middle to 50 feet,

instead of 45, and at- the extremities to 100 feet, instead of

90, as proposed in the design.—As to the form of this width

or enlargement, the side of the arch might be bounded either

by a circular arch, or by any curve that will look most grace¬

ful : perhaps a very excentric ellipse will answer as well as

any other curve, or better.

Quest. 3. In what proportions should the weight be dis¬
tributed from the centre to the abutments, to make the arch
uniformly strong ?

Answer. To make the arch uniformly strong throughout,

it ought to be made an arch of equilibration, or so as to be

equally balanced in every part of its extent.—When the ma¬

terials of the arch are uniform and solid, then, to find the

weight over every part of the curve, so as to put the arch in

equilibrio, is the same thing as to find the vertical thickness of

the arch in every part, or the height of the extrados, or back

of the arch, over every point of the intrados or soffit of the

under curve of the arch : the rule for determining and pro¬

portioning of which, is described at large in my Treatise on

Bridges, particularly in prop. 4*, and the examples there given

to the same. But in the case of the present proposed design

for a bridge, a strict mathematical precision is not to be ex¬

pected or attained by mere calculation, on account of the

open frame work of iron, in parts of various shapes and sizes.

We must therefore be content with a near approach to that

point of perfection ; which can be accomplished in a degree

* The same as prop. 10, tract J, of this volume.
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sufficient to answer all the purposes of safety and convenience.
Now this can be conveniently done, by a comparison of the
present design of a bridge, with the example of a similar in-
trados curve in the book above mentioned, and which is the
case of the first example to the said 4th prop., being that
with a circular soffit. By that example it appears, that the
weight above every point itl the soffit curve, should increase
exactly in proportion as the cube of the secant of the number
of degrees in the arch, from the centre or middle, to the se¬
veral points in going toward the abutments. This propor¬
tion, though it require an inlinite weight or thickness at the
extremities of a whole semicircle, where the arch rises per¬
pendicular to the horizon ; yet for a small part of the circle
near the vertex, the necessary increase of weight or thick¬
ness, toward the extremities, is in a degree very consistent
with the convenient use and structure of such a bridge ; as
will be evident by a glance of the figure and curve to that
example. For, as the whole extent of the soffit arch, in the
present design for an iron bridge, is but about 48° 54', or
24° 27' on each side, from the middle point to the abutments,
that is, little more than the fourth part of the arch in that
example; therefore, by cutting out the fourth part of that
arch, it will give us a tolerable idea of the requisite shape of
the whole structure, and increase in the thickness where the
materials arc solid, or at least the increase in weight over
every point in the soffit;
that is, the figure exhibits
a curve for the scale of
such increase. Or, if w'e
compute the numeral va¬
lues of the weights or
thickness, by the rule in
that example, in the pro¬
portion of the cube of
the secants, they will be
as in the annexed tablet;
which is computed for
every degree in the arch,

D«sr. Wt.or height Deg. Wt.c>rlK'ii>-ht

0 10-000 13 10-810
1 10-000 14 10-947
2 10-018 15 1 1-096
3 10-041 16 11-25S
4 10-073 17 11-434
5 10-115 18 11-625
6 10-166 19 11-831
7 10 227 20 12-052
8 10-298 21 12-290
9 10-379 22 12-546

10 10-470 23 12-821
11 10-572 24 13-116
12 10-685 241 13-272

'/
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from the middle, supposing the middle thickness or weight

to be 10. And the true representation of the figure, as con¬

structed from these numbers, or the extrados curve deter¬

mining the true scale of weight or thickness, over every such

point in the soffit curve, is as is here exhibited below. Where

the thickness or height in the middle being supposed 10, the

vertical thickness or height of the outer curve, above the

inner, at the extremities, is 13*272, or nearly 13^-, and the

other intermediate thicknesses, at every degree from the ver¬

tex, are as denoted by the numbers in the latter column of the

table. If the thickness at top be supposed 7, or 8, or 12, or

any other number, instead of 10, all the other numbers must,

be changed in the same proportion. Now the upper curve

in this figure is constructed from these computed tabular

numbers, and exhibits an exact scale of the increase of weight

or thickness, so as to make the whole an arch of equilibration,

or of uniform strength throughout, when the materials are of

uniform shape and weight. And in this case the upper curve

does not sensibly differ from a circular arc in any part of it.

But, as the convenient passage over the bridge requires that

the height or thickness at the extremities, or imposts, should

be a great deal more than in proportion to these numbers

denoting the equilibrium of weight, it therefore follows, that

the frame work of the pieces above the arch, in the filling

up of the flanks, ought to be lighter and lighter, or cast of

a form more and more light and' open, as in the engraved

design,, so as to bring the loading in those parts as near to

the equilibrium weight, as the strength and stability of the

iron frames will permit.

Quest. 4. What pressure will each part of the bridge re¬

ceive, supposing it divided into any given number of equal

sections, the weight of the middle section being given ; and
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on what part, and with what force, will the whole act upon
the abutments ?

Answer. By the equal' sections, mentioned in this question,

may be understood, either vertical sections of equal weight,

or those perpendicular to the curve of equal weight, or of

equal length ; and whichever of these is intended, their thrust

or pressure in direction of the curve may be easily computed,

if wanted for the purpose of making experiments on the

strength of the frames, to know whether they will bear those

pressures, or what degree of pressure they will bear, without

being crushed in pieces. But as it is evident that the frames

next the abutments will suffer the greatest pressure of any,

I shall here give a computation of the actual pressure there,

which may be sufficient, since if the frames at the abutments

are capable of sustaining that greatest pressure, we may safely

conclude, that all the others, from thence to the vertex, will

be more than capable of sustaining the lesser loads or pres¬

sures to which they are subject; and this computation will

answer the latter and most essential part of the question, viz.

“ on what part, and with what force, will the whole act on

the abutments.” Now, from the nature of an arch, it appears

that the whole pressure on the abutments, will be chiefly on

the lower part of the impost, where the lower frame rests on

it, and where we shall therefore, in our computation, suppose

it to act. And in the calculation, the whole weight of the

half arch ao must be supposed united in its centre of gravity
N. Then, if a vertical line mn be drawn through the centre

of gravity n, by computation it is found that dm is nearly

equal to 160 feet, and consequently me equal to 140 feet:

also, if no be perpendicular to the impost, or in the direction

of the arch at oe ; we shall have this proportion, viz, as mn
(60), is to the weight of the half arch (3250 tons), so is no
(152), to the pressure on the impost in the direction of the

arch at o, and so is me (140), to the horizontal thrust or

pressure in the direction me ; this gives S233 tons for the

pressure on the impost at o in direction of the arch, and
7583 tons for the horizontal thrust in direction me ; being
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the pressures at each end of the bridge. We may therefore!

estimate the greatest pressure on the last or abutment frame,
at about 3 or 9 thousand tons.

Quest. 5. What additional weight will the bridge sustain,

and what will be the effect of a given weight placed upon

any of the before mentioned sections ?

Answer. It is perhaps not possible to pronounce exactly

what additional weight the bridge will sustain, without break¬

ing, as it depends on so many circumstances, some of which

are not known. But, consideriim- the oreat dimensions and

strength of the arch frames, and of the whole fabric, we are

authorized to conclude, that there is no possible weight which

can pass over any part of the bridge, even heavy loaded wag¬

gons, whose pressure can be great enough to cause any dan¬

ger to such strong and massy materials, and especially when

it is considered that, by connecting all the frames together,

by proper bond and otherwise, as mentioned in the answer

to the first question, the local additional pressure will soon

be distributed through the whole series of the iron framing.

Quest. 6. Supposing the bridge executed in the best

manner, what horizontal force will it require, when applied

to any particular part, to overturn it, or press it out of the

vertical plane ?

Answer. This question will be much better answered by

means of experiments, made on a proper model, than by

theoretical calculations a priori. But when the bridge is

executed in the best manner, with the frames properly bonded

and connected together, it seems more likely that any violent

horizontal shock, such as a ship driving against it, would

break any particular frame, rather than overturn such a mass

of bonded materials, or even move it sensibly out of the ver¬

tical position.

Quest. 7. Supposing the span of the arch to remain, the

same, and to spring ten feet lower, what additional strength

would it give to the bridge.—Or, making the strength the

same, what saving may be made in the materials.—Or, if

instead of a circular arch, as in the plate and drawings, the
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bridge should be made in the form of an elliptical arch, what

would be the difference in effect, as to strength, duration,

convenience and expence f

Answer. Should the arch spring ten feet lower than in

the design, the bridge would be more stable, because the

thrust or pressure on the abutments would be directed lower

down, and more into the solid earth: and in general, the

lower the springing of the arch, the more firm the abutments

and stable the bridge, if the height of the crown above the

springing of the bridge be the same.—But the greatest ad¬

vantage would be, by making the bridge in the form of an

elliptical arch, instead of the circular one, in all the articles

of strength, duration, convenience, and expence. For, as

the elliptical flanks require less filling up than the circular,

this will produce a great saving in the iron frame work : and

this same reduction of materials in the flanks, toward the

abutments, is the very cause of greater strength, by reducing

the weight there nearer to the case of equilibration; since

that very extraordinary mass employed in the flanks of the

circular arch destroys the equilibrium of the whole, by an

overload in that part. The elliptical arch will be also much

more convenient, as it will allow of a greater height of navi¬

gation way between the water and the soffit of the arch. The.

elliptical arch is also a much more graceful and beautiful
form than the circular arch.

Quest. 8. Is it necessary or adviseable, to have a model

made of the proposed bridge, or any part of it, in cast iron.

If so, what are the objects to which the experiments should be

directed ; to the equilibration only, or to the cohesion of the

several parts, or to both united, as they will occur in the in¬

tended bridge ?

Answer. It appears to be very adviseable, to have a model

made of the whole of the proposed bridge, in cast iron, as

well for the greater safety and satisfaction, as for the benefits

and improvements to be derived from the experiments to be

made with it, and from the experience and knowledge de-
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rived from the casting and making it.—The objects to which

the experiments should be directed, might be, the equilibrium

of the whole, the cohesion and fitting of the several parts, the

effects of a vertical load on every part separately, and the

effects of a horizontal blow or shock against every part in

the side of the arch. Also what weight would be requisite to
break or to crush the model frames.

Quest. 9 . Of what size ought the model to be made, and

what relative proportions will experiments, made upon tha

model, bear to the bridge, when executed ?

Answer. The greater the size of the model, the more sa¬

tisfactory the experiments and conclusions will be. For'this

purpose, it seems adviseable, that the model be not less than

the 20th part or dimensions of the bridge, that is, of 30 feet

in length. Now, as the solid contents of similar bodies are

in the same proportion as the cubes of their linear dimen¬

sions, such a model would require only the S thousandth part

of the weight or metal in the bridge, because the cube of 20

is 8000. So that, as it is estimated the bridge -will require

6500 tons of metal, it follows, that about 3 quarters of a ton

weight of metal will suffice for the model of 30 feet in length.

As to the relative proportions of experiments made with the

model: those relating to the equilibrium, will be in the same

direct proportion with the masses of the model and bridge,

as well as those relating to loads or shocks. But the strength

of any particular bar or frame will be onlv as the square of

the scantling, while the stress upon it will be barely in the

same proportion as the length.

Quest. 10. By what means may ships be best directed in

the middle stream, or prevented from driving to the side, and

striking the arch; and what would be the consequence of such
a stroke ?

Answer. Some kind of fences might be placed in the river,

to direct the navigation to the proper opening in the middle.

The effect of the stroke or shock of a vessel, striking the side

of the bridge, if very heavy, might endanger the breaking
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of the particular frame or bar so struck. But, the whole

being well bonded and connected together, none of the others

would probably be displaced.

Quest. 11 . The weight and lateral pressure of the bridge

being given, can abutments be made in the proposed situa¬

tion for London bridge, to resist that pressure ?

Answer. No doubt of it; and especially if the courses

of masonry have the joints directed towards the centre of the
arch.

Quest. 12. The weight and lateral pressure of the bridge

being given, can a centre or scaffolding be erected over the

river, sufficient to carry the arch, without obstructing the

vessels which at present navigate that part ?

Answer. I doubt not that the requisite centring or scaffold¬

ing can be erected, without obstructing the present naviga¬
tion.

Quest. 13. Whether it would be most adviseable to make

the bridge of cast iron and wrought iron combined, or of cast

iron only; and if of the latter, whether of the hard white

metal, or of the soft grey metal, or of gun metal?

Answer. It appears most adviseable to make the bridge

of cast iron only, and that of the soft grey metal, the bars

and frames of which will be less liable to fracture by a blow

or shock, than the hard metal.

The mixture of wrought iron with the cast metal, would

be very improper, as the sorts are of unequal expansion and

contraction by heat and cold, and as the several arch frames

should not be tied or bolted together, but suffered to have a

little play lengthways, in their butting grooves, so as that no

one part be more confined than another.

Quest. 14. Of what dimensions ought the several mem¬

bers of the iron work to be, to give the bridge sufficient

strength ?

Answer. This question will be best answered by experi¬
ments made on the metal.

Quest. 15. Can frames of cast iron be made sufficiently

eorrect, to compose an arch of the form and dimensions a*
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shown in the drawings No. 1 and 2, so as to take an equal

bearing as one frame, the several parts being connected by

diagonal braces, and joined by an iron cement, or other sub¬
stance ?

N. B. The plate is considered as No. 1.

Answer. There can be no doubt that cast iron frames may

be made sufficiently correct to compose an arch of any form

whatever, and give them an equal bearing; because the

wooden moulds, from which the metal is cast, can be made

or cut to any shape desired.
Quest. 16. Instead of casting the ribs in frames, of con¬

siderable length and breadth, as shown in the drawing No. 1

and 2, would it be more adviseable to cast each member of

the ribs in separate pieces of considerable lengths, connect¬

ing them together by diagonal braces, both horizontally and

vertically, as in No. 3 ?

Answer. It is, in my opinion, better to cast the ribs in

frames, of considerable length and breadth.
Quest. 17. Can an iron cement be made, which will

become hard and durable, or can liquid iron be poured into

the joints ?
Quest. 18 . Would lead be better to use in the whole, or

any part of the joints ?

Answers to Questions 17 and 18. The joints might either

be filled with an iron cement; or liquid iron might be poured

into the joints, having a furnace near at hand for that pur¬

pose ; or, melted lead may be run in, which will be best of

all; because, being a soft metal, it will yield to, and accom¬

modate itself to the inequalities of pressure or of shape,

forming a sound and soft bond or bearing between frame and

frame ; and preventing their fracturing each other by a too

hard and unequal bearing ; in some respect performing the

same office as the cartilages between the joints of the bones
in the animal frame.

Quest. 19. Can any improvement be made in the plan,

so as to render it more substantial and durable, and less ex¬

pensive, And if so, what are those improvements ?
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Answer. Although the plan appears to possess a very ex¬

traordinary degree of excellence, I am of opinion, that it is

not incapable of some further improvements, so as to render

it more substantial and durable, as well as less expensive.

The circumstances which, it appears to me, would be im¬

provements, are as follow:

1st. To make the vertical arch or curve of the bridge

elliptical, instead of circular ; which will be an improvement

in stability, in convenience, in beauty, and in saving px-

pence.

2d. To make the width of the bridge 50 feet in the middle,

and 100 feet at the extremities: which will add greatly to its

stability and security.

3d. To make the thickness of the arch at the crown-, or the

height of the middle or key frame there, to be not less than

10 or 12 feet, instead of 6 or 7 as proposed ; because, in so

extended and massy a fabric, that seems to be the least thick¬

ness that can afford a rational ground for security and sta¬

bility.

4tb. I would tie or connect every course of frames to those

next above them, so as that the whole bridge may rise or

settle together as one mass, by expansion or contraction. Yet

I would not tie or bolt the frames together lengthways, but

would simply make the edge, or the tenons, of the side of

each frame, fit into the groove or the mortice holes of the

next, going into each other two or three inches; by which

means the arch frames will always sit or fit close together,

in every degree of temperature, without straining or tearing
asunder at the ties.

5thly. I would place the frames of the whole fabric so to¬

gether, as to make a proper bond, in the manner of good

masonry, by making them all to break joint both longitu¬

dinally and transversly: by which means, every shock or

pressure on any part, would be broken and divided, or

shared, among a great many, and any openings be prevented,

which might arise from the manner of placing the frames

with straight joints continued quite through,
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Quest. 20. Upon considering the whole circumstances

of the case, and agreeable to the resolutions of the Select

Committee, as stated at the conclusion of their Third Re¬

port, Is it your opinion that an Arch of 600 feet in the span,

as expressed in the drawings produced by Messrs. Telford

and Douglass, or the same plan, with any improvements you

may be so good as to point out, is practicable and adviseable,

and capable of being rendered a durable edifice ?

Answer. On considering the whole circumstances of the

case, It is my opinion, that an Arch of 600 feet in the span,

as expressed in the drawings produced by Messrs. Telford

and Douglass, especially when combined with the improve¬

ments above mentioned, is practicable and adviseable, and

capable of being rendered a durable edifice.
Charles Hutton.

Woolwich, April 21, 1801.

TRACT VI.

HISTORY OF IRON BRIDGES.

A General History of all Arches and Bridges, both an¬

cient and modern, and constituted of either wood, or stone,

or iron, would be a very curious and important work. It

should contain a particular account of every circumstance re¬

lating to them : such as their history, date, place, artificer,

form, dimensions, nature, properties, &c. Such a work, in a

chronological order, would make a considerable volume, and

much too large to form a part of the present work. I con¬

fine my views, therefore, in the present Tract, to a short

account of the novel invention of Iron Bridges, in several

instances that have recently been executed or proposed ;

some few of which have been lately noticed in the new

edition of Dr. Rees’s Encyclopedia.
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Bridges of cast iron appear to be the exclusive invention

of British artists. The first that was executed on a large

scale, is that on the river Severn, at Colebrook Dale, which

was erected in the year 1779, by Mr. Abr. Darby, iron¬

master at that place. This bridge is composed of five ribs;

and each rib of three concentric rings or circles, which are

connected together by radiated pieces. The inner ring, of

each rib, forms a complete semicircle : the others only seg¬

ments, being terminated and cut off at the road-way. These

rings pass through an upright frame of iron, which stands on

the same plate as the ribs spring from ; which not only acts

as a guide to the ribs, but also supports a part of the road¬

way. Between the inner upright of this frame and the outer

ring of the ribs, in the haunches, is a circular ring of iron,

of about 7 feet diameter ; and between the outer upright of

the frame, and the ribs, are two horizontal pieces, which act

as abutments between the stonework and the ribs. There

are also two diagonal stays, to keep the ribs upright. The

roadway is covered with cast iron plates ; and it has an iron

railing on each side. The inner or under ring, of each rib,

is cast in two pieces, each of which is about 78 feet in length,vol. i. r,
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the arch being 100 feet 6 inches span : and the whole of the

iron in it weighs n8| tons.

Whoever judiciously examines the construction of this

bridge, will see, that its fame has arisen chiefly from the cir¬

cumstance of its having- been the first of the kind : for the

construction is very 7 bad. The cast iron indeed is in the

best state of preservation: but the stone-work has cracked in

several places. It is probable, therefore, that its duration

will not be long; though not from any deficiency in the
iron-work.

The second iron bridge which has come to my knowledge,

is that which was designed by the noted Mr. Thomas Payne.

This arch was set up in a bowling-green, at the public-

house called the Yorkshire Stingo, at Lisson-Green, in the

year 1790. This bridge was intended to be sent to America;

but, owing to Mr. Payne’s being unable to defray the ex¬

pense, the arch was taken down by Messrs. Walker of Ro¬

therham, the persons who made it, and some of the materials

were afterwards employed in the bridge at Wearmouth and

Sunderland, next following.

The third iron bridge that has come to our knowledge,

was that executed on the river Wear, at Sunderland, by

Rowland Burdon, Esq. M. P. for the county of Durham, by

the assistance of Messrs. Walker the founders, Mr. Wilson,

and several other persons: and for erecting bridges on simi¬

lar principles, the first gentleman took out a patent in the

year 1794. This bridge was begun in the year 1793, and

completed in August 1796. The stone abutments are 70 feet

high, above the ordinary surface of the low-water in Sunder¬

land harbour, to the spring of the arch. The iron arch is

236 feet span; and the springing stones project about 2 feet

beyond the face of the masonry: so that the whole span,

from abutment to abutment, is 240 feet. The versed sine of

the arch is 30 feet: its soffit is therefore 100 feet above the

surface of low-water in Sunderland harbour.

The arch is composed of 6 ribs ; and each rib of 3 con¬

centric rings, or segments of circles. Each ring is 5 ^ inches
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deep, by 4f inches thick ; and these rings are connected by
radii, 4f inches by 2-^ ; the rings being at such a distance
from each other, as to make the whole depth of a rib 5 feet.
The ribs are composed of pieces of about 2-^ feet long; and
worked iron bars are let into grooves in the sides of the rings,
and fastened by rivets. These ribs are connected transversely
by hollow iron tubes, or pipes, with flanches on their ends,
and fastened to the ribs by screw-bolts: there are also diagonal
iron bars, to prevent the ribs from twisting. The haunches
are filled with circular rings; and the top is covered with a
frame of wood, and planked, to sustain the roadway. It has
also an iron railing on each side.

The construction of this bridge is thought to be superior
to that at Colebrook Dale; and its weight is much less, in
proportion to the length, the whole being only 250 tons, of
which 210 tons are cast iron, and 40 tons of worked iron.
Yet it is considered in no small danger of falling, the arch
having settled several inches, as well as twisted from a straight
direction, and the whole vibrating and shaking in a remark¬
able manner in passing over it.

The fourth iron bridge that has been executed, is that over
the river Severn at Buildwas, about 2 miles above Colebrook

3BH1r“4ia
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mm
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Dale. It was begun in the year 1795, and finished in 1796,
the iron work by the Colebrook Dale Company, under the
direction of Mr. Thomas Telford. The arch is 130 feet
span, with a versed sine or height of only 17 feet; and it is
but 18 feet wide to the outside. This bridge seems to have
been eontructed on the principle of the famous wooden bridge
at Schaufhausen. The ribs under the roadway are segments
of a large circle, each cast in two pieces: but, on each side
of the railing, there is a rib, cast in 3 pieces, which springs
from a base, 10 feet lower, then crosses the others, and rises
as high as the top of the railing : and from the upper part of
these outer side ribs, the other ribs, which bear the covering
plates, are suspended by king-posts: the covering plates,
which are 46 in number, each extending quite across the
bridge, have flanges 4 inches deep, and act as an arch. The
outside ribs are 18 inches deep, and 2|. inches thick ; the
middle ribs 15 inches deep, and 2 \ thick; and the whole
weight of iron is about 174 tons.

^MiumMIlilllOlig
iyrh7-T.:r■■s-jZZ'iz-

Perhaps this may not be the most favourable construction
that might be contrived: the tendency of the rib aa, when it
expands, being to raise the ribs bb a little higher than they
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would by their own expansion, and to depress them lower
when it contracts: which is not the case in a wooden bridge,
this material not being so affected by heat and cold.

About the same time as the bridge at Buildwas was erected,
an iron bridge was thrown over the river Tame in Hereford-
shire; but its parts were so slender, and so ill disposed, that
no sooner was the wooden centring taken from under it, than
the whole gave way, and tumbled into the river.

In the same year also as the Buildwas bridge was begun,
another was erected by the Colebrook Dale Company, over
the river Parret, at Bridgewater. The arch of this bridge is
an ellipsis of 75 feet span, with 23 feet rise. The haunches
are fdled with circular rings of iron, and other fanciful
figures : it is composed of ribs connected together by cross
ties of iron ; and the roadway is supported by plates. This
bridge is very neat, and thought to be exceedingly firm and
durable.

From the completion of the above bridge, few of any note
were executed in this country, till about the year 1800, when
the stone bridge erected over the Thames, at Staines, gave
way. On this occasion the magistrates of the counties of
Middlesex and Surrey came to a resolution to erect an iron
bridge there, on the abutments of the stone bridge, the piers
of which had failed ; and Mr. Wilson, the agent of Mr. Bur-
don, was employed for this purpose. He accordingly under¬
took the construction of an iron arch of 181 feet span, with
16f feet rise or versed sine; the arch being the segment of a
circle. In this bridge the ribs were similar to those of Wear-
mouth : but instead of having the blocks, of which the ribs
are composed, kept together by worked iron bars, let into
grooves in their sides, the rings of the ribs were cast hollow,
and a dowel was let into the hollow ring at each joint; so that
the two adjacent blocks were fixed together by this dowel,
and by keys passing through the rings. The ribs were also
connected transversely by frames, instead of pipes as in the
Sunderland bridge. The haunches were filled with iron
rings, and the whole was covered with iron plates.
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It is to be noted, that an iron arch, in small blocks, k not

set up alter the manner oi'a stone one, by beginning at the

abutments, and building upwards; but is begun at the top,

anti continued downwards; it being easier to join the stone

to the iron, than to cut the iron at the top, if it should not

fit. It is somewhat remarkable, therefore, that when these

ribs were pat together, and before they joined the masonry,

it was so nicely balanced, and its parts were so firmly locked

together, that after all the supports were taken out, except

those next the abutment, the whole was moved by a man,

with a crowbar under the top, and it seemed to have little

tendency to push the abutments asunder. This, however,

turned out unfortunately not to be the case. The centring

was taken away, and the bridge was opened for the use of the

public, about the end of the year 1801, or beginning of 1802.

At first it seemed to stand firm, and the public were much

pleased wdth its light and elegant appearance. But in a short

time it wras found that the arch was sinking; and soon after

it had gone so much, that it was obliged to be shut up, and

the old bridge opened again. The sinking of the arch broke

several of the transverse frames, and many of the radii at

the haunches ; which left no doubt that the abutments had

given way. But on examination there appeared no visible

sign of such failure : there was not a crack in the masonry,

nor had they gone out of the upright.—After much investi¬

gation however, it appeared that the whole masonry of the

abutments, to the very foundation, had slidden horizontally

backwards, still preserving the perpendicular, or upright

position. The failure took place in the south abutment,

which was supposed to be owing to a cellar, that had been

made in it. The inhabitants of Staines therefore, by the ad¬

vice of an engineer whom they consulted, had this abutment
strengthened : but no sooner was this done, than the north

one failed : and they had intended to strengthen this also ;

but their funds being nearly exhausted, they came to the re¬

solution to take the whole down, and erect a wooden bridge

in its stead, *
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Before the completion oftheiron bridge at Staines, another

was begun of the same dimensions, and on the same principle,

over the river Tees at Yarm. This bridge was completed

also: but, instead of gradually yielding, as that at Staines

had done, the whole suddenly tumbled into the river at
once.

From the accidents above described, and from several others,

of less note, iron bridges have lost a good deal of their cele¬

brity, but probably on no just grounds. Those failures that

have happened, have net been through any intrinsic defi¬

ciency in the iron material, but from the injudicious manner

in which they have been constructed. An opinion has gone

forth, not only among the practical builders of iron bridges,

but among some men of science, that the lateral pressure of

iron bridges, in consequence of their parts being so firmly

bound together, is comparatively small, to that of stone

arches. But, on a due consideration of their principle, I

believe it will be found quite different, and that an iron arch,

of the same weight as one of stone, requires much stronger

abutments, to resist its lateral pressure or push, than the stone
arch does. And this we shall here endeavour to account

for.

Stone may, in a great measure, be considered as an un¬

elastic substance, being very little subject to expansion or

contraction. When, therefore, an arch is composed of this

material, and the abutments are sufficiently strong, to support

it, when left to itself, there is little probability of its failure.

No ordinary load upon it will excite a tremulous motion ;

nor will it change by heat or cold. The lateral pressure on

the piers or abutments is therefore uniform.

But iron is an elastic substance, and is greatly affected by

heat or cold, expanding with the one, and contracting by

the other. When, therefore, a heavy load acts upon an iron

bridge, such as a loaded waggon, the whole is put in motion,

and the arch vibrates like the string of a violin, contracting

and expanding while its parts are in the act of vibration.

Thus at one part of the vibration it pulls the abutments to-
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gether, and at the other it pushes them asunder, with a force

compounded of the quantity of matter in motion, and the ve¬

locity with which it moves. When it expands, the whole

weight of the arch is raised, and the pressure on the abut¬

ments is compounded of the matter and velocity of the weight

raised. No such pressure, or rather impulsive momentum,

takes place in a stone bridge : therefore the strength of the

abutments of an iron bridge should be such, as not only to

sustain the weight of the arch, but also the additional push

arising from the causes above stated. The abutments of

Staines bridge were only 14 fpet thick ; whereas they ought
to have been at least 25 feet. There were also other causes

which contributed to the failure of this bridge, such as the

improper manner in which the foundations were made.—■

The abutments of Yarm bridge were made still weaker than

those of Staines : no wonder, therefore, that its failure was
more sudden.

I am therefore most decidedly of opinion, from what has

happened in the bridges above described, and in several

others, that no part of the failure is attributable to the iron

materia!, at least respecting its strength.—I do not however

mean to say, that iron is generally to be preferred to stone:—•

on the contrary, I think a stone bridge is preferable to an iron

one, when it can be executed with propriety and conveniency.

But there are many cases where stone would not answer the

purpose; in which cases therefore iron is most valuable.-:—.

The cases here chiefly alluded to, are when the foundations

cannot be made within the width that a stone arch can with

convenience be erected ; or when the requisite rise would be

very inconvenient for a stone bridge, or in places where stone

cannot easily be procured. The bridge at Wearmouth is an

example of the former, as stone piers would have very much

obstructed the navigation of the river ; and of the latter, as

the arch is a segment of a circle of about 500 feet diameter.

The bridge at Boston, in Lincolnshire, is another example,

though of less extent: the banks of the Witham are very low,

and the houses are built close to the river; the rise of tide is
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great, and barges navigate under it: therefore, to render the

access easy over the bridge, it became necessary to make it

flat; and to admit of headroom under the arch, flatness again

■was necessary. This bridge was therefore made of cast iron.

Its span is 86. feet, and its versed sine only 5 ^ feet. The

abutments have been well secured ; and though many of the

radii of the ribs broke, when the pavement was put on it, yet

the rings are quite entire, and the bridge is as firm as can be
wished.

In the course of the late improvements in Bristol harbour,

two handsome cast iron bridges were erected over the New

River there, in the years 1805 and 1806, under the direction

of Messrs. Jessop. These two bridges are equal and alike in

all respects. The arch in each is a circular segment, of 100

feet span, with a versed sine or rise of only 15 feet: the width

of the bridge about 31 feet: the whole is of cast iron, of the

strongest grey metal; amounting to 150 tons, viz. 100 tons

in the ribs, pillars, bearers, balustrade, &c, and 50 tons in the

plates for the roadway. The arch consists of two concentric

circular rings or segments, firmly connected and bound toge¬

ther. Each of these is formed of 6 ribs, at 6 feet distance

from each other, tied together by cross bars, at intervals of

about feet; as appears in the plan of the fabric here an¬

nexed on the following page. On the upper ring, of each

rib, stand a number of pillars, in an upright position, or per¬

pendicular to the horizon, their tops formed like a T, as

bearers to support the plates for the roadway. All which,

with the railing, or balustrade, as well as the disposition and

coursing of the abutments, with piling underneath, appear ip

the represented elevation following; the courses of masonry

very judiciously being laid inclining, as we have elsewhere

recommended; and the whole seems otherwise very properly
Contrived. It would lead us too far here to enumerate all the

ingenious particulars in the construction of this arch, with the

dimensions of all the parts, and the practical methods of put¬

ting them together, and securing the whole in the firmest

manner, as prescribed to the iron masters for their direction.
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Suffice it therefore to observe, that, from the mode of putting

the bridge together, it is so contrived, that if any part be in¬

jured, it can be taken out, and replaced, without disturbing

the main body of the bridge.

The cost of one bridge, independent of the digging and

earth work, and making the roads to it, was nearly as below.£.
Piles - -- -- -- -- 250

Masonry, 3200 yards, at 18s. including stone - - 1600

Iron work, 100 tons, at 9l. 18s. and 50 tons, at 9l. - 1440

Covering with gravel, and paving, &c. - 292

Expences of erection and painting - - - - 418

<£4000

Thus has been given a short history of such iron bridges

as have come to my knowledge : aware however that many

others have been built, both for roads and for aqueducts in ca¬

nals, &c: but none of these, that I have heard of, are remark¬

able either for their span or construction : so that it appears

unnecessary to enter into any particular description of them.

The projects also that have been made for bridges of this

kind, but not executed, are numerous, and a short account

may here be added of some of the more remarkable designs

that have come to our notice; though our researches have

not enabled us to trace any of them to a period prior to the

execution of the bridge at Colebrook Dale.

A design was made in the year 1783, by whom, does not

appear, for an arch, chiefly of iron, of 400 French feet in

span, and 45 feet in the versed sine; answering to a circle of

about 934 feet diameter. This design, with a memorial on the

advantages of using iron, in the construction of bridges, was

presented by the author to the unfortunate Louis of France, on

the 5 th of May 1783. It had two large ribs, partly of iron and

partly of wood. These ribs were 30 feet deep at the springs,

and 15 feet at the midde of the arch. Each rib was composed

cf 4 rings, drawn from different centres, the inner ring
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being the strongest; and they were connected together by
pieces of iron in various fanciful forms, little adapted to give
strength to the arch. Between.the ribs were cills, or logs of
timber, laid transversely, resting on the interior ring; and a
floor of wood was proposed to cover them. So that the road
was suspended by the ribs; and the upper part of the ribs
was to answer the purpose of a parapet, similar to the wooden
bridges in Switzerland.—It appears that this project possessed
little merit beyond the boldness of its design ; and we have
never heard that any bridge has been constructed on this
principle.

In the )’ear 1791 a project was made by Mr. John Rennie,
Civil Engineer, for an iron bridge, intended for the isle of
Nevis. The span of the arch was to be 110 feet, and its
versed sine 13-j-; answering to a circle of 234 feet diameter.
It was proposed that this arch was to have 6 ribs; each rib
to consist of 3 rings, which were to be connected together
by radii. The depth of the rib at the middle was 3-£ feet,
and at the springs 6 feet. The ribs were to be connected
together by transverse frames of iron, placed in the joints of
the blocks of which the ribs were composed : the haunches
to be filled with circular rings of iron ; and the whole was to
have been covered with plates of iron, to support the road.

In April 1794, he made another design for the same island
of Nevis, in which the span was 80 feet, and the rise or versed
sine 9 £ feet. This design was formed on the same principles
as the former, except that the rib was 11-J deep at the springs,
though still only in the middle. The radii were continued
to the roadway ; and the whole was to be covered with iron
plates, as the former. Neither of these designs however was
executed, as the French got possession of the island.

From the above period, no projects for iron bridges, except
those above described, have come to my knowledge, till ap¬
plications were made to parliament, for the purpose of im¬
proving the port of London, by means of wet docks. The
House of Commons, after having heard a great deal of evi¬
dence, on the inadequacy of the Thames to accommodate the
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shipping, appointed a select committee, to take the whole

into their consideration, and to report to the house the best

means for giving relief to the extensive commerce of the me¬

tropolis. This committee, after having recommended the

construction of the West India and London Docks, took up

the consideration of the state of the Thames, and of London

Bridge, which forms the great obstruction to the influx of

tide, and greatly injures the navigation of this very important

commercial river ; and in the year 1799 they directed plans

of London bridge to be made out, with correct descriptions

of its construction and state of repair; from which it appeared

to them, that a new bridge, of more waterway, was impe¬

riously required: and in consequence encouragement was held

out to artists, to bring forward designs, for the construction

of a new bridge, instead of the old one. On this occasion

many designs were made out, and presented to the committee.

Some were for stone bridges, and some for iron. But as the

object of this account relates to projects for iron bridges only,
we shall here confine our attention to these last alone.

The encouragement held out, by tbe Select Committee,

brought forward four designs of this kind : namely, one by

Mr. Wilson, formerly mentioned, of 3 arches ; the middle

one of which was 240 feet span, having a versed sine of 37

feet; the two side arches of 220 feet span each, and their

versed sine 30 feet. The height of the soffit of the middle

arch 80 feet above the high-water of an ordinary neap tide.

The principles of this design were so nearly the same as those

of Sunderland bridge, that it is unnecessary to enter into any

minute description of it.

Two other designs were brought forward by Messrs. Tel¬

ford and Douglass : one to consist of 5 arches across the

river, and the other of 3. The middle arch of the former

was 180 feet span, with a versed sine of 38 feet; also two

arches, each of 140 feet span, and two of 120 feet span each.

The other had a middle arch of 240 feet span, with a versed

sine of 48 feet; and two side arches, of 220 feet span each :

the height of the soffit of the middle arch being 80 feet above
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the high water of neap tides, the same as that of Mr. Wilson’s

design.
The arches of both the designs of Messrs. Telford and

Douglass were constructed in the same manner ; therefore a
description of one will serve for both. They were composed
of ribs; each rib having an outer and inner ring : the inner
ring much stronger than the outer, and they were connected
together by radiated bars, which extended quite to the pieces
that supported the roadway. In the large arches there were
two portions of rings, to stay the radiated bars in the haunches;
but in the small arches only one. Of how many pieces the
ribs were composed, or in what manner to be joined, was not
shown in the designs, nor mentioned in the descriptions. The
great height given to these bridges, to admit of vessels pass¬
ing under them, venders it necessary, particularly on the
south side of the river, where the land is under the level of
spring tides, that long approaches, or inclined planes, as the
designers called them, should be made; and these they pro¬
posed to support on iron arches, constructed in a manner
similar to those of the bridge. By the section it appears that
there will be a rise of about 1 foot in 19, on the main approach
from the Borough ; so that, taking the height of the road¬
way on the bridge at 60 feet above the wharf of the Thames,
this approach will'extend 1140 feet into the Borough, High-
street. Now a rise of 1 in 19 is almost double the rise in
Ludgate-hill: so that, if it were to be made the same rise as
Ludgate-hill, it would extend to a distance not much short
of half a mile. The side approach upward, it appears also,
■would come within about 260 yards of Blackfriars bridge,and
that downwards would extend to nearly opposite the Tower.
So that a considerable part of the Borough would probably
be subjected to great inconveniences and expences by these
far extended approaches, which appear unavoidable. The
additional labour too that would by this means be occasioned,
would probably cost more, to the inhabitants of London and
the Borough of Southwark, than all the advantage that might
arise by bringing vessels up to Blackfriars bridge. These ob-
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jections are not applicable to these designs alone, but in an

equal degree to Mr. Wilson’s also.

There can be no doubt but that both designs could beexe-

cuted ; whatever may have been the opinion of artists on the
skill exercised in their mechanical construction. We have

before shown, that the true principle on which an arch ought

to be constructed, is to increase the depth of the voussoir, as

it is called in masonry, towards the spring of the arch, so that

the arch, with its load upon it, shall be in equilibrio in all its

parts. This being accomplished, it does not appear that any

good can result from extending the radii further; for as the

roadway presses perpendicularly on the arch, it appears not

the strongest mode to support this perpendicular load by in¬

clined pieces ; but rather the contrary. It seems proper,

therefore, that the roadway should be sustained by upright

pillars of iron, instead of inclined radii, though less elegant

in appearance to the eye: nay we might even prefer the

circular rings or eyes of Mr. Wilson, to this mode: though

we are aware that a circle, pressed on four points, is by no

means calculated to bear a very great pressure.

The Select Committee of the House of Commons, not be¬

ing satisfied with any of the three designs, that have been

described, directed Messrs. Dance and Jessop to report,

whether any, and what advantages, would accrue to the na¬

vigation of the Thames, if it were to be considerably con¬

tracted. Accordingly these gentlemen reported, that if, in¬

stead of the channel of the Thames at London bridge being

740 feet wide, as it was proposed to be when the above de¬

signs were made, it were reduced to 600 feet, that great ad¬

vantages -would result to the navigation ; since, by diminish¬

ing the width, the depth would be much increased.—It might

be foreign to the purpose of the present work, to enter into

any discussion on the propriety of this measure; for which

reason \Ve may leave that discussion to a future opportunity.

In consequence of this opinion, Messrs. Telford and Douglass

presented to the Committee a very elegant and magnificent

design, for an arch of 600 feet span, haying its versed sine
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about 65 feet; so that the circle of which this arch is a seg¬

ment, must be about 1450 feet diameter.

The arch was composed of seven ribs; and each rib may

be said to have 6 rings, the 3 lower concentric, and about S

feet deep. The dimensions of the iron cannot be correctly

taken by measurement from the plan, this being on a small

scale. These rings were connected by radii about 18 inches

asunder ; the outer and inner are the strongest, and that in

the middle appears light, and seems intended, it is presumed,

chiefly to stiffen the radii, though doubtless it will also add

to the strength of the bridge. The ribs are composed of

frames of iron, each about 10 feet long, which extend quite

to the entablature of the cornice. The other 3 rings are not

concentric with those 3 lower, but each drawn from a larger
radius than the other. The lowest of these three terminates

in the upper ring of the three lower, at about 120 feet from

the key, or the middle of the arch. The two above this

unite at about the same distance from the middle of the arch,

and are thence continued in one ring, till they reach within

about 35 feet of the middle or key of the arch, where they

join the said upper rib of the lower three. These three upper

ribs are united to the third or upper ring, of those first de¬

scribed, by means of radii; but the spaces between these radii

include the space of two of the lower radii; and, instead of

being stiffened by a light ring, as the lower radii are, that

object is effected by Gothic tracery. These seven ribs, above

described, are set parallel to each other ; and, to brace them

horizontally, there are six others, or diagonal ribs, four of

which cross the former diagonally, two terminating in the

middle rib, and two in the adjoining ribs; and there are two

outside ribs, that terminate each on the face of the exterior

ones. So that, in fact, two of the seven have no diagonal

rib terminating at their top. The whole of these last described

ribs are therefore side or diagonal braces, to keep the seven

principal ribs in their vertical position, and prevent the arch

from racking sideways, as happened at Sunderland or Wear-

mouth bridge, before mentioned.—All these vertical and
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diagonal ribs are connected together by transverse Frames,
at the joints of each of the radiated frames orvoussoirs. The
top or platform, under the roadway, is covered, in the usual
manner, with iron plates ; and there is a light iron railing on
each side, with Gothic ornaments.—The breadth of the road¬
way at the top, or middle of the arch, is 45 feet, and at the
haunch or extremity of the arch S2 feet wide.—The arch
springs from large frames of iron, set in abutments of ma¬
sonry ; and its approaches are similar to those before de¬
scribed for the designs of Messrs. Telford and Douglass.

The principles on which this arch is designed, may be found
in a work published at Leyden, in the year 1721, entitled
“ Recueil dc plusieurs machines de nouvelle invention, ouv-
rage posthume de M. Claude Perrault, &c. &c.” and is de¬
scribed in pages 712, 13,14 of that work, and represented in
plates 10 and 11. It is described, “ Pont de bois d’une seule
arche de trente toises de diametre, pour traverser la Saine
visavis le village de Sevre, ou l’on proposoit de la contruire.”
It may also he seen in the 1st vol. of the Machines approved
by the Academy of Sciences, pa. 59 , pi. 14. It may appear
perhaps doubtful to some persons, whether this design is so
proportioned as to be in perfect equilibrio, being remarkably
heavy at the haunches ; and that, were such an arch as there
described to be erected over the Thames, whether it would
permanently support itself.—The extension of the radii to
the roadway has been before noticed as not well adapted to
sustain the perpendicular pressure, with which it would be
charged, and that unless its parts were in perfect equilibrio,
the joints of the frames might open in such a manner, as to
derange the whole fabric, and accelerate its destruction.—
That an iron arch of 600 feet span might he constructed in
such a manner, as to become a firm and stable fabric, it is not
meant to be denied; but, according to the principles we have
laid down, it should be rather differently constructed from'
that we have described. Indeed, if the weight of iron, men¬
tioned in the estimate, be correct, the parts must be very
slender indeed; and were the whole to be in equilibrio, this

VOL. I. M
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weight of the structure itself might bend the parts in such a

manner, as in some measure to endanger its downfall.

We imagine that three distinct objects were proposed to

be obtained by the improvements which the public have in

view. These are, 1st. The maintaining of deeper water,

from the lower part of the Thames to Blackfriars bridge,

and upward.—2d. More clear space for the navigation of

vessels under the bridge.—3d. Effecting this object with the
least rise of road over it.

In respect to the first question, I have already declined en¬

tering into it; being of opinion it is a discussion rather fo¬

reign to the purpose of a book on bridges.—The second ap¬

pears to come fully under the scope of the principles we have

treated on.—The arch here proposed, as we have before seen,

i§ of 600 feet span, with a versed sine or rise of 65 feet. Now,

at the distance of 100 feet from the middle, the height is 58

feet; at 150 feet from the middle the height is 49 feet; and

at 200 feet it is 37 feet in height. So that, only about 200

feet, or .§. of the width of the river, can be accounted fit for

the navigation of coasters : about another third may he fit for

the ordinary barges; and the remaining third will be for little

other purpose than the lug boats and wherries that ply on the
river.

Vessels, therefore, in departing from the wharfs, must be

drawn out nearly to the middle of the river, before they can

take the advantage of the tide downwards: and those coming

to a wharf, must fetch up in the river till they are hauled into

it. This might do for vessels that frequent wharfs situated

a considerable distance above the bridge: but those for wharfs

that might be near it, must experience much trouble and in¬

convenience ; and it is to be feared that the}' would fre¬

quently sustain damage in their masts and rigging, by strik¬

ing against it, and might probably injure the bridge itself.

Mr. Rennie has very properly noticed this, in his answer to

one of the queries proposed by the Select Committee of the

House of .Commons : but he follows up his observations by

saying, that, as the strength of the current will be chiefly in
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the middle of the river, the vessels will generally pass in that

track. Now we may admit that, for a vessel sailing up or

down the river, and going to some wharf near Blacldriars

bridge, or departing from thence downward, that this will

be the case : but when going to, or sailing from wharfs near

the new bridge, it will be very much otherwise; as may be

observed by any one who will attend to the vessels sailing to

or from the wharfs below London bridge : and we should

fear that, in order to prevent the accidents above noticed,

dolphins, or some such contrivance, will be found absolutely

necessary, to keep the vessels in the proper track, in passing

through this arch.—Now, if we be right in our conjecture,

it would probably be better to have two piers, and a bridge

of three arches, than a bridge of one only ; by which the

height or space under the bridge, for vessels to pass, might

be very much increased ; and those wharfs which lie near the

bridge not be subject to the inconveniences, nor the vessels
to the risk before mentioned.

Thirdly, Abridge of three arches will not require the ribs

to be so deep at the top, as a bridge of one arch, by at least

3 feet; and therefore so much will be gained in the height of

the roadway over it. On the whole therefore it seems, that

the design in question is not completely calculated to attain

the objects the Select Committee of the House of Commons

had in view : but, on the contrary, that it will appear to most

thinking men, rather an injudicious idea, to effect by a great

work, that which can at least as well, if not better, be ac¬

complished by a work of less expence, and of more probable

stability.

Our observations have been hitherto confined to the possi¬

bility and propriety of executing an iron arch, of 600 feet

span, according to the design given with the report of the

House of Commons. We may now add some observations on

the practicability of building abutments, in this situation, suf¬

ficiently strong to resist the lateral pressure of this arch ;

which, according to our calculation, made on the supposi¬

tion that the arch would be similar to one of stone, acting
M 2
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with a regular and uniform pressure upon it, would be of

about 9000 tons. But when tbe effects of the vibration, which

must necessarily take place in an arch of this magnitude, are

taken into consideration, the lateral pressure, or rather

vibrating push, will far exceed that quantity ; and for this

effort, as has been before noticed, provision must be made in

the strength of the abutments: and though the thickness of

these in the design, namely 85 feet, seems to be great, yet I

am inclined to think it would be found too small, especially

at the south end of the bridge, where I am informed the

ground is very bad, being moorlog and soft mud to a con¬

siderable depth. Indeed I should fear that something of the

kind of what happened at Staines would be likely to take place

here, namely, the whole mass of masonry be forced back ho¬

rizontally, by the great lateral push of the arch, in spite of

every precaution that could be taken to prevent it. But we

must observe, as we have before done in answer to theQueries

in the Report of the Committee of the House of Commons,

that thefoundations of the abutments should belaid inclining

towards the centre of the circle to which the arch is drawn,

as a more likely mode of preventing them from sliding out¬

wards, than if laid horizontally : but even with this precau¬

tion, if the substratum be moorlog or soft mud, it will be likely

to give way ; and if this ever take place, the abutment and
arch must follow it.

The following is a rough sketch, on a very small scale, on

the design, at least very elegant, which was given along with

the above project.
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As in some degree and nature related to the foregoing
account of iron arches, properly so called, we may here add
a few words, just to notice two ingenious works lately exe¬
cuted, being a kind of straight or flat arch, for an iron aque¬
duct, supported on pillars, carried over rivers. These were,
both of them, designed by Mr. Thomas Telord, engineer,
and executed under his direction.

The former was a small aqueduct of cast iron, the first for
a navigable canal, which was constructed in the year 1195 ,
on the Shrewsbury canal, near Wellington in Shropshire.
It is 180 feet in length ; and the surface of the water in the
aqueduct is about 20 feet above that of low water in the
river. The supporting pillars, in this case, are also of cast
iron. There are no ribs under the bottom plates, these
being connected with the side plates, shaped like the stones
in a flat arch, which is also the case in the second instance,
at Pontcysylte. The iron work of this aqueduct was cast at
Ketley foundery, by Messrs. Reynolds.

The second instance was erected in the year 1805, at the
Pontcysylte aqueduct. It having been found necessary to
carry the Ellesmere canal across the river Dee, at the eastern
termination of the vale of Llangollen, at the height of 126
feet 8 inches above the surface of low water in the river,
Mr. Telford conceived the bold design of effecting this by
means of an aqueduct constructed of cast iron, supported
by stone pillars. These are 20 in number, including the
abutments : the length of the aqueduct is 1020 feet, and
the breadth across it 12 feet. It has been in constant use
for the purposes of navigation ever since it was first opened,
on the 26th of November 1805, and it answers every pur¬
pose perfectly well. The iron work was cast, and set up,
by Mr. William Hazledine, of Shrewsbury. A small view of
the elevation of this elegant structure is as here below.
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TRACT VII.

A DISSERTATION ON THE NATURE AND VALUE OF INFINITE

SERIES.

1. About the year 1180 I discovered a very general and

easy method of valuing series, whose terms are alternately

positive and negative, which equally applies to such series,

whether they be converging, or diverging, or their terms all

equal; together with several other properties relating to

certain series : and as there may be occasion to deliver some

of those matters in the course of these tracts, this opportu¬

nity is taken of premising a few ideas and remarks, on the

nature and valuation of some of the classes of series, which

form the object of those communications. This is done with

a view to obviate any misconceptions that might perhaps be

made, concerning the idea annexed to the term value of such

series in those tracts, and the sense in which it is there always

to be understood ; which is the more necessary, as many con¬

troversies have been warmly agitated concerning these mat¬

ters, not only of late, by some of our own countrymen, but

also by others among the ablest mathematicians in Europe,

at different periods in the course of the last century ; and all

this, it seems, through the want of specifying in what sense
the term value or sum was to be understood in their disser¬

tations. And in this discourse, I shall follow, in a great

measure, the sentiments and manner of the late celebrated
L. Euler, contained in a similar memoir of his in the fifth

volume of the New Petersburgh Commentaries, adding and

intermixing here and there other remarks and observations

of my own.

2. By a converging series, is meant such a one whose

terms continually decrease ; and by a diverging series, that
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whose terms continually increase. So that a series whose
terms neither increase nor decrease, but are all equal, as they
neither converge nor diverge, may be called a neutral series,
as a — a a — a -1- &c. Now converging series, being sup¬
posed infinitely continued, may have their terms decreasing
to 0 as a limit, as the series 1 — •£ + 4 — + + & c > or on ^y
decreasing to some finite magnitude as a limit, as the series
r — i + T — 4 + &c, which tends continually to 1 as a
limit. So, in like manner, diverging series may have their
terms tending to a limit, that is either finite or infinitely
great: thus the terms 1 — 2 + 3- 4 + &c, diverge to in¬
finity ; but the diverging terms f — •§• + J- — 4 + &c, only
to the finite magnitude 1. Hence then, as the ultimate terms
of series which do not converge to 0, by supposing them
continued in infinitum , may be either finite or infinite, there
will be two kinds of such series, each of which will be further
divided into two species, according as the terms shall either
be all affected with the same sign, or have alternately the
signs + and —. We shall, therefore, have altogether four
species of series which do not converge to 0, an example of
each of which may be as here follows:

r

1 + 1 + 1 + 1+ 1+ 1 + &c.
++4+4+4+ 4 + 4 + &C.
1 - I + 1 - 1 + 1 - 1 + &c.
4 - 4 + I - 4 + i - 4 +
1 + 2 + 3+ 4+ 5 + 6 + &c.
1 + 2 + 4 + 8 + 16 + 32 + tkc.
1 — 2 + 3— 4+ 5 - 6 + &c.
1 _ 2 + 4 - 8 + 16 - 32 + &c.

3. Now concerning the sums of these species of series,
there have been great dissensions among mathematicians;
some affirming that they can be expressed by a certain sum,
while others deny it. In the first place, however, it is evi¬
dent that the sums of such series as come under the first of
these species, will be really infinitely great, since by actually
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collecting the terms, we can arrive at a sum greater than any

proposed number whatever: and hence there can be no doubt

but that the sums of this species of series may be exhibited

by expressions of this kind —. It is the other

species, therefore, that mathematicians have chiefly differed;

and the arguments which both sides allege in defence of their

opinions, have been endued with such force, that neither

party could be hitherto brought to yield to the other.

4. As to the second species, the celebrated Leibnitz was

one of the first who treated of this series 1 — 1+1 — 1 +

1 — 1 + &c, and he concluded the sum of it to be = f,

relying on the following cogent reasons. And first, that this

series arises byresolving the fraction ^ ^ into the series

1 — a + a* — a 3 + a* — a s + &c, by continual division in

the usual way, and taking the value of a equal to unity.

Secondly, for more confirmation, and for persuading such as

are not accustomed to calculations, he reasons in the follow¬

ing manner: If the series terminate any where, and if the

number of the terms be even, then its value will be = 0 ;

but if the number of terms be odd, the value of the series

will be = 1: but because the series proceeds in infinitum,
and that the number of the terms cannot be reckoned either

odd or even, we may conclude that the sum is neither = 0,

nor = 1, but that it must obtain a certain middle value,

equidifferent from both, and which is therefore = f. And

thus, he adds, nature adheres to the universal law of justice,

giving no partial preference to either side.

5. Against these arguments the adverse party make use of

such objections as the following. First, that the fraction

;—;— is not equal to the infinite series 1 — a + a? ~ a 3 +
1 + a ^

&c, unless a be a fraction less than unity. For if the division

be any where broken off, and the quotient of the remainder

be added, the cause of the paralogism will be manifest;
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for we shall then have

a n +
1 + a

= 1 — a + w1 - a 3a 3 +

± a” T - a ; and that, although the number n should

be made infinite, yet the supplemental fraction rp

a" + 1

1 + a

ought not to be omitted, unless it should become evanescent,

which happens only in those cases in which a is less than 1,

and the terms of the series converge to 0. But that in other

cases there ought always to be included this kind of supple¬

ment T

an + 1

1 ~f- CL; and though it be affected with the dubious

sign +, namely — or + according as n shall be an even or

an odd number, yet if n be infinite, it may not therefore be

omitted, under the pretence that an infinite number is neither

odd nor even, and that there is no reason why the one sign

should be used rather than the other; for it is absurd to sup¬

pose that there can be any integer number, even though it

be infinite, which is neither odd nor even.

-6. But this objection is rejected by those who attribute de¬

terminate sums to diverging series, because it considers an

infinite number as a determinate number, and therefore either

odd or even, when it is really indeterminate. For that it is

contrary to the very idea of a series, said to proceed in infi¬

nitum, to conceive any term of it as the last, though infinite :

and that therefore the objection above-mentioned, of the

supplement to be added or subtracted, naturally falls of itself.

Therefore, since an infinite series never terminates, we never

can arrive at the place where that supplement must be joined;

and therefore that the supplement not only may, but indeed

ought to be neglected, because there is no place found
for it.

And these arguments, adduced either for or against the

Slims of such series as above, hold also in the fourth species,

which is not otherwise embarrassed with any further doubts

peculiar to itself.

7. But those who dispute against the sums of such series,
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think they have the firmest hold in the third species. For

though the terms of these series continually increase, and

that, by actually collecting the terms, we can arrive at a

sum greater than any assignable number, which is the very

definition of infinity ; yet the patrons of the sums are forced

to admit, in this species, series whose sums are not only

finite, but even negative, or less than nothing. For sine*

the fraction —--, by evolving it by division, becomes

1 -f a + a 1 + a? + a* + &c, we should have

= -l = l+ 2 + 4+ 8 + 16 + &C,

= - i = 1 + 3 + 9 + 27 + 81 + &c,

which their adversaries, not undeservedly, hold to be absurd,

since by the addition of affirmative numbers, we can never

obtain a negative sum ; and hence they urge that there is the

greater necessity for including the before-mentioned supple¬

ment additive, since by taking it in, it is evident that

— lis=l+2 + 4+ 8 . . . ... 2” +

though n should be an infinite number.
8. The defenders therefore of the sums of such series, in

order to reconcile this striking paradox, more subtle perhaps

than true, make a distinction between negative quantities; for

they argue, that while some are less than nothing, there are

others greater than infinite, or above infinity. Namely, that

the one value of — 1 ought to be understood, when it is

conceived to arise from the subtraction of a greater number
a + 1 from a less a ; but the other value, when it is found

equal to the series 1 + 2 + 4 + 8 + &c, and arising from

the division of the number 1 by - 1; for that in the former

case it is less than nothing, but in the latter greater than infi¬

nite. For the more confirmation, they bring this example
of fractions

2 11 1 1 I * 1
4* 3’ 2 * 1> O’ -i> _2> ~3>
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which, evidently increasing in the leading terms, it is inferred

will continually increase ; and hence they conclude that —J

is greater than ■£, and —- greater than —-, and so on: and

therefore as —^ is expressed by — 1, and £ by , or infinity,
— 1 will be greater than <-> , and much more will = _a be
greater than . And thus they ingeniously enough repel¬
led that apparent absurdity by itself.

9. But though this distinction seemed to be ingeniously
devised, it gave but little satisfaction to the adversaries; and
besides, it seemed to affect the truth of the rules of algebra.

For if the two values of — 1, namely 1—2 and —p be really
different from each other, as we may not confound them, the
certainty and the use of the rules, which we follow in making
calculations, would be quite done away; which would be a
greater absurdity than that for whose sake the distinction

was devised: but if 1 — 3 = —p as the rules of algebra
require, for by multiplication —1 x (1 — 2) =—1 + 2=1,
the matter in debate is not settled; since the quantity — 1,
to which the series 1+2+4 + 8 + &c, is made equal, is
less than nothing, and therefore the same difficulty still re¬
mains. In the mean time however, it seems but agreeable
to truth, to say, that the same quantities which are below
nothing, may be taken as above infinite. For we know, not
only from algebra, but from geometry also, that there are
two ways, by which quantities pass from positive to negative,
the one through the cypher or nothing, and the other through
infinity: and besides, that quantities, either by increasing or
decreasing from the cypher, return again, and revert to the
same term 0; so that quantities more than infinite are the
same with quantities less than nothing., like as quantities less
than infinite agree with quantities greater than nothing.

10. But, .further* those who deny the truth of the sums
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that have been assigned to diverging series, not only omit to
assign other values for the sums, but even set themseives ut¬
terly to oppose all sums whatever belonging to such series,
as things merely imaginary. For a converging series, as
suppose this 1 + f + A + -g- + &c, will admit of a sum

— 2, because the more terms of this series we actually add,
the nearer we come to the number 2: but in diverging series
the case is quite different; for the more terms we add, the
more do the sums which are produced differ from one an¬
other, neither do they ever tend to any certain determinate
value. Hence they conclude, that no idea of a sum can be
applied to diverging series, and that the labour of those per¬
sons who employ themselves in investigating the sums of such
series, is manifestly useless, and indeed contrary to the very
principles of analysis.

11. But notwithstanding this seemingly real difference, yet
neither party could ever convict the other of any error, when¬
ever the use of sex'ies of this kind has occurred in analysis;
and for this good reason, that neither party is in an error,
the whole difference consisting in words only. For if in any
calculation we arrive at this series 1 — 1+1 — 1+ ike,
and that we substitute -J- instead of it, we shall surely not
thereby commit any error; which however we should cer¬
tainly incur if we substitute any other number instead of that
series; and hence there remains no doubt but that the series
1— 1 + 1— 1+ &c, and the fraction + are equivalent
quantities, and that the one may always be substituted instead
of the other without error. So that the whole matter in dis¬
pute seems to be reduced to this only, namely, whether the
fraction f can be properly called the sum of the series 1—1
+ 1 — 1 + &c. Now if any persons should obstinately
deny this, since they will not however venture to deny the
fraction to be equivalent to the series, it is greatly to be feared
they will fall into mere quarrelling about words.

12. But perhaps the whole dispute will easily be compro¬
mised, by carefully attending to what follows. Whenever,
in analysis, we arrive at a complex function or expression,
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either fractional or transcendental; it is usual to convert it
into a convenient series, to which the remaining calculus may
be more easily applied. And hence the occasion and rise of
infinite series. So far only then do infinite series take place
in analytics, as they arise from the evolution of some finite
expression ; and therefore, instead of an infinite scries, in any
calculus, we maj' substitute that formula, from whose evo¬
lution it arose. And hence, for performing calculations with
more ease or more benefit, like as rules are usually given for
converting into infinite series such finite expressions as are
endued with less proper forms; so, on the other hand, those
rules are to be esteemed not less useful, by the help of which
we may investigate the finite expression from which a pro¬
posed infinite series would result, if that finite expression
should be evolved by the proper rules: and since this ex¬
pression may always, without error, be substituted instead
of the infinite series, they must necessarily be of the same
value: and hence no infinite series can be proposed, but a
finite expression may, at the same time, be conceived as
equivalent to it.

13. If, therefore, we only so far change the received notion
of a sum as to say, that the sum of any series, is the finite
expression by the evolution of which that series maybe pro¬
duced, all the difficulties, which have been agitated on both
sides, vanish of themselves. For, first, that expression by
whose evolution a converging series is produced, exhibits at
the same time its sum, in the common acceptation of the
term: neither, if the series should be divergent, could the
investigation be deemed at all more absurd, or less proper,
namely, the searching out a finite expression which, being
evolved according to the rules of algebra, shall produce that
series. And since that expression may be substituted in the
calculation instead of this series, there can be no doubt but
that it is equal to it. Which being the case, we need not
necessarily deviate from the usual mode of speaking, but
might be permitted to call that expression also the sum,
which is equal to any series whatever, provided however,
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that, in series whose terms do not converge to 0, we do not

connect that notion with this idea of a sum, namely, that the

more terms of the series are actually collected, the nearer we

must approach to the value of the sum.

14. But if any person shall still think it improper to apply

the term sum, to the finite expressions by whose evolution

all series in general are produced ; it will make no difference

in the nature of the thing ; and instead of the word sum, for

such finite expression, he may use the term value, or func¬

tion, or perhaps the term radix would be as proper as any

other that could be employed for this purpose, as the series

may justly be considered as issuing or growing out of it, like

as a plant springs from its root, or from its seed. The choice

of terms being in a great measure arbitrary, every person is

at liberty to employ them in whatever sense he may think

fit, or proper for the purpose in hand ; provided always that
he fix and determine the sense in which he understands or

employs them. And as I consider any series, and the finite

expression by whose evolution that series may be produced,

as no more than two different ways of expressing one and the

same thing, whether that finite expression be called the sum,

or value, or function, or radix of the series ; so in the follow¬

ing paper, and in some others which may perhaps hereafter

be produced, it is in this sense I desire to be understood,

when searching out the value of series, namely, that the ob¬

ject of the enquiry, is the radix by whose evolution the series

may be produced, or else an approximation to the value of

it in decimal numbers, &c.
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TRACT VIII.

A NEW METHOD FOR THE VALUATION OF NUMERAL INFI¬

NITE SERIES, WHOSE TERMS ARE ALTERNATELY (+)

PLUS AND ( — ) MINUS ; BY TAKING CONTINUAL ARITH¬

METICAL MEANS BETWEEN THE SUCCESSIVE SUMS, AND

THEIR MEANS.

ARTICLE 1.

The remarkable difference between the facility which
mathematicians have found, in their endeavours to determine
the values of infinite series, whose terms are alternately affirm¬
ative and negative, and the difficulty of doing the same thing
■with respect to those series whose terms are all affirmative,
is one of those striking circumstances in science which we
Can hardly persuade ourselves is true, even after we have seen
many proofs of it; and which serve to put us ever after
on our guard not to trust to our first notions, or con¬
jectures, on these subjects, till we have brought them to the
test of demonstration. For, at first sight it is very natural
to imagine, that those infinite series whose terms are all affirm¬
ative, or added to the first term, must be much simpler in
their nature, and much easier to be summed, than those whose
terms are alternately affirmative and negative; which, how¬
ever, we find, on examination, to be directly the reverse;
the methods of finding the sums of the latter series being nu¬
merous and easy, and also very general, whereas those that
have been hitherto discovered for the summation of the former
series, are few and difficult, and confined to series whose
terms are generated from each other according to some par¬
ticular laws, instead of extending, as the other methods do,
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to all sorts of series, whose terms are connected together by

addition, by whatever law their terms are formed. Of this

remarkable difference between these two sorts of series, the

new method of finding the sums of those whose terms are al-

ternately positive and negative, which is the subject of the

present tract, will afford us a striking instance, as it possesses

the happy qualities of simplicity, ease, perspicuity, and uni¬

versality ; and yet, as the essence of it consists in the alter¬

nation of the signs + and —, by which the terms are con¬

nected with the first term, it is of no use in the summation of
those other series whose terms are all connected with each

other by the sign + .

2. This method, so easy and general, is, in short, simply

this : beginning at the first term a of the series a — b + c —

d + e — J + &c, which is to be summed, compute several

.successive values of it, by taking in successively more and

more terms, one term being taken in at a time ; so that the

first value of the series shall be its first term a, or even 0 or

nothing may begin the series of sums ; the next value shall

be its first two terms a — b, reduced to one number ; its next

value shall be the first three terms a — b + c, reduced to one

number ; its next value shall be the first four terms a — b

+ c —■ d, reduced also to one number; and so on. This, it

is evident, may be done by means of the easy arithmetical

operations of addition and subtraction. And then, having

found a sufficient number of successive values of the series,

more or less as the case may require, interpose between these

values a set of arithmetical mean quantities or proportionals-;

and between these arithmetical means interpose a second set

of arithmetical mean quantities; and between these arith¬

metical means of the second set, interpose a third set of

arithmetical mean quantities ; and so on as far as you please.

Bv this process we soon find either the true value of the

series proposed, when it has a determinate rational value, or

otherwise we obtain several sets of values approximating

nearer and nearer to the sum of the series, both in the co¬

lumns and in the lines, either horizontal or obliquely de¬
void. I. N

i\\

A
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scending or ascending; namely, both of the several sets of

means themselves, arid the sets or series formed of any of

their corresponding terms, as of all their first terms, of their

second terms, of their third terms, &c, or of their last terms,

of their penultimate terms, of their antepenultimate terms,

&c : and if between any of these latter sets, consisting of the

like or corresponding terms of the former sets of arithmetical

means, we again interpose new sets of arithmetical means, as

we did at first with the successive sums, we shall obtain other

sets of approximating terms, having the same properties as

the former. And thus we may repeat the process as often

as we please, which will be found very useful in the more

difficult diverging series, as we shall see hereafter. For this

method, being derived only from the circumstance of the al¬

ternation of the signs of the terms, + and —, it is therefore

not confined to converging series alone, but is equally appli¬

cable both to diverging series, and to ventral series, by which

last name I shall take the liberty to distinguish those series,

whose terms are all of the same constant magnitude; namely,

the application is equally the same for all the three following

sorts of series, viz.

Converging, 1— i + -|- ~ t + t — i + &c.

Diverging, 1 — 2 + 3 — 4 + 5 — 6 + &c.
Neutral, 1 — 1 + 1 — 1 + 1 — 1 + &c.

As is demonstrated in what follows, and exemplified in a

variety of instances.

It must be noted, however, that by the value of the series,

I always mean such radix, or finite expression, as, by evolu¬

tion, would produce the series in question ; according to the

sense we have stated in'the former paper, on this subject; or

an approximate value of such radix ; and which radix, as it

may be substituted instead of the series in any operation, I
call the value of the series.

3. It is an obvious and well-known property of infinite

series, with alternate signs, that when we seek their value

by collecting their terms one after another, v re obtain a scries

of successive sums, which approach continually nearer and
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nearer to the true value of the proposed series, when it is a

converging one, or one whose terms always decrease by some

regular law ; but in a diverging series, or one whose terms

as continually increase, those successive sums diverge always
more and more from the true value of the series. And from

the circumstance of the alternate change of the signs, it is

also a property of those successive sums, that when the last

term which is included in the collection, is a positive one,

then the sum obtained is too great, or exceeds the truth ; but

when the last collected term is negative, then the sum is too

little, or below the truth. So that, in both the converging

and diverging series, the first term alone, being positive, ex¬

ceeds the truth ; the second sum, or the sum of the first two

terms, is below the truth; the third sum, or the sum of the

three terms, is above the truth ; the fourth sum, or the sum

of four terms, is below the truth; and so on ; the sum of any

even number of terms being below the true value of the series,

and the sum of any odd number, above it. All which is ge¬

nerally known, and evident from the nature and form of the

series. So, of the series a — b + c — cl + e — f + &c,

the first sum a is too great; the second sum a — b too little;

the third sum a — b + c too great; and so on as in the fol¬

lowing table, where s is the true value of the series, and 0 is

placed before the collected sums, to complete the series,

being the value when no terms are included :
Successive sums.

s is greater than
s is less than

5 is greater than
s is less than

s is greater than
s is less than

&c.

0

a

a — b

a — b + c

a — b + c —cl

a — b + c — d f e

&c.

4. Hence the value of every alternate series s, is positive,

and less than the first term a, the series being always sup¬

posed to begin with a positive term a ; and consequentlv, if

the signs of all the terms be changed, or if the series begin
N 2
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with a negative term, the value 5 will still be the same, but

value become — s — — a + b — c d — &e. Also, be¬
cause the successive sums, in a converging series, always ap¬
proach nearer and nearer to the true value, while the}- recede
always farther and farther from it in a diverging one ; it
follows that, in a neutral series, a — a -\- a — a 4- &c, which
holds a middle place between the two former, the successive
sums 0, a, 0, a, 0, a, &c, will neither converge nor diverge,
but will be always at the same distance from the value of the
proposed series a — a a — a + &c, and consequently that
value will always be = fa, which holds every where the mid¬
dle place between 0 and a.

I am not unaware that, though a — a + a — a -1-&c,

will also arise by evolving several other functions in like
manner ; as

or any other similar function, in which the numerator has
fewer terms than the denominator. Yet the preference
among them all seems justly due to the first

is said above, viz, put s for the value of the series a — a +
a — a + &c : since

then s =■ a — a + a — a -1-&c,
and a = a, take the upper equ. from the under,
then a — s = a — a + a —■ a + &c = s by sup.
theref. a — s zz s, and 2s = a, or s — fa, as above.

.5. Now, with respect to a converging series, a — b-\-c—d+
&e ; because 0 is below-, and a above s, the value of the series,
but a nearer than 0 to the value s, it follows that s lies be¬
tween a and fa, and that fa is less than s, and so nearer to s
than 0 is. In like manner, because a is above, and a — b
below the value s, but a — b nearer to that value than a is,

negative, or the sign of the sum will be changed, and the

may be produced by evolving - - -- --- by actual division, it

a z + a'- + a z + &c
-, or -;-;--
U -f- Hi -f- U (l “J~ (l “j"

a+a-j-a + a-1- &c’

a + a
or

2 a i“,a, for this reason, besides what



t \

TRACTS. INFINITE SERIES.:' 181

it follows that s lies between a and a — b, and that the arith¬
metical mean a — \b is something above the value of s, but
nearer to that value than a is. And thus, the same reason¬
ing holding in every following pair of successive sums, the
arithmetical means between them will form another series of
terms, which are, like those sums, alternately less and greater
than the value of the proposed series, but approximating
nearer to that value than the several successive sums do, as
every term of those means is nearer to the value s, than the
corresponding preceding term in the sums is. And, like as
the successive sums form a progression approaching always
nearer and nearer to the value of the series; so, in like man¬
ner, their arithmetical means form another progression, com¬
ing nearer and nearer to the same value, and each term of the
progression of means nearer than each term of the successive
sums. Hence then we have the two following series, namely,
of successive sums and their arithmetical means, in which each
.step approaches nearer to the value of 5 than the former, the
latter progression being however nearer than the former, and
the terms or steps of each alternately below and above the
value s of the series a — b c — d -f- &e.

Successive sums.
“3 0

cr a

—3 a — b

t- a — b + c
-a a — 6+c — d

cr a — b + c •— d -{-e
&c.

where the mark -3, placed before any step, signifies that it
is too little, or below the value $ of the converging series
a — b + c — d -f- &c ; and the mark c~ signifies the con¬
trary, or too great. And hence ia , or half the first term
of such a converging series, is less than s the value of the
series.

Arithmetical means.
-a la

cr a — lb
-31 a — b + \c

cr a -— Z> -|- c —
-3 a ■— b + c — d + -le
cr a — b c — + e —



182 THE VALUATION OF TRACT 8.

6. And since these two progressions possess the same pro¬

perties, hut only the terms of the latter nearer to the truth

than the former; for the very same reasons as before, the

means between the terms of these first arithmetical means,

will form a third progression, whose terms will approach still

nearer to the value of 5 than the second progression, or the

first means ; and the means of these second means will ap¬

proach nearer than the said second means do ; and so on con-

tinually, every succeeding order of arithmetical means, ap¬

proaching nearer to the value of s than the former. So that

the following columns of sums and means will be each nearer

to the value of s than the former, viz.

Sue, sums. 1st means.
0 a

2
r- a

b

a ~ a

a — b
a~l >+f

£T" +
1 . d

a—b+c—-

"3
a — b-\-c — d

kc.
a — b + k c.

2d means,
3a —b

4

a
5b-c

4

a—b -f

3c -d
4

a b + c —
3d—e

4

a — b-{-kc.

3d means.
7 a —4 b + c

8
7J-4 cAri

. Ic—id+c

a — b +—g-

a — b + c—kc.

a — b + kc.

Where every column consists of a set of quantities, ap¬

proaching still nearer and nearer to the value of.?, the terms

of each column being alternately below and above that value,

and each succeeding column approaching nearertban the pre¬

ceding one. Also every line, formed of all the first terms, all

the second terms, all the third terms, kc, of the columns,forms

also a progression whose terms continually approximate to

the value of s, and each line nearer or quicker than the former;

but differing from the columns, or vertical progressions, in

this, namely, that whereas the terms in the columns are al¬

ternately below and above the value of s, those in each line

are all on one side of the value s, namely, either all below or

all above it; and the lines alternately too little and too great,

namely, all the expressions in the first line too little, all those
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in the second line too great, those in the third line too little,

and so on, every odd line being too little, and every even line

too great.

15a—Ub+5c—a 3!« —26/>-M6e — Gd + e .
-,-—!-, &c, are con-1G 32 ’ ’

tinual approximations to the value s, of the converging series

a — b -f- c — d 4- e — &c, and are all below the truth. But

we can easily express all these several theorems by one gene¬

ral formula. For, since it is evident by the construction, that

while the denominator in any one of them is some power

(2") of 2 or 1 +1, the numeral co-efficients of a, b, c, &c,

the terms in the numerator, are found by subtracting all the

terms except the last term, one after another, from the said

power 2” or (1 -f- 1)", which is =

n — 1 n ■— In — 2 , ,
1 4- n + n .-h w.-•- h &c,namely tne

ii 2 2 3

coefficient of a equal to all the terms 2”, minus the first term

1 ; that of b equal to all except the first two terms ] + n;

that of c equal to all except the first three; and so on, till

the coefficient of the last term be = 1, the last term of the

power ; it follows that the general expression for the several

theorems, or the general approximate value of the converg¬

ing series b — a c — </ + &c, will be

&c, continued till the terms vanish and the series break off,

n being equal to 0 or any integer number. Or this general

formula may be expressed by this series,

&c] ; where a, b, c, &c, denote the coefficients of the seve¬

ral preceding terms. And this expression, which is always

too little, is the nearer to the true value of the series

a— b-\-c — d-{- &c, as the number n is taken greater: always

7. Hence the expressions —.
a 3a — b 7 a~ 45-j-cIT’ T~’ 8 :>

X [(2”— l)a — (a — n)b + (b — n. )c—(c—n.
n— 1 n — 2.

2 3
Id
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excepting however those cases in which the theorem is accu¬

rately true, when n is some certain finite number. Also, with

any value of n, the formula is nearer to the truth, as the terms

a, b, c, &c, of the proposed series, are nearer to equality ; so

that the slower any proposed series converges, the more ac¬

curate is the formula, and the sooner does it afford a near

value of that series: which is a very favourable circumstance,

as it is in cases of very slow convergency that approximating

formula are chiefly wanted. And, like as the formula ap¬

proaches nearer to the truth as the terms of the series ap¬

proach to an equality, so when the terms become quite equal,

as in a neutral series, the formula becomes quite accurate,

and always gives the same value -t a for s or the series, what¬

ever integer number be taken for n. And further, when the

proposed series, from being converging, passes through neu¬

trality, when its terms are equal, and becomes diverging, the

formula will still hold good, only it will then be alternately

too great, and too little as long as the series diverges, as we

shall presently see more fully. So that, in general, the value

s of the series a — b + c — cl -f- &c, whether it be con¬

verging, diverging, or neutral, is less than the first term a ;

when the series converges, the value is above la ; when it

diverges, it is below \a ; and when neutral, it is equal to ^a.
8. Take now the series of the first terms of the several

orders of arithmetical means, which form the progression of

continual approximating formulae, being each nearer to the

value of the series a — b c — d - f- &e, than the former,

and place them in a column one under another; then take the

differences between every two adjacent formulae, and place

them in another column by the side of the former, as here

follows:
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Approx. Formula;.
a

Differences.
a—b

2

3a— b

4 '
la — 4 b-\-c

8

15a — 1 li + 5c — cl

16

31a —2 Gb-\- 16c— 6 d-\-e

4

a — 2 b-\-c
8

a — 3b + 3c— d
Te

a — 4/> + 6c — 4i7 + c
32

32
&c. &c.

From which it appears, that this series of differences consists
of the very same quantities, which form the first terms of all
the orders of differences of the terms of the proposed series
a — b + c — cl &c, when taken as usual in the differential
method. And because the first of the above differences added
to the first formula, gives the second formula; and the se¬
cond difference added to the second formula, gives the third
formula ; and so on; therefore the first formula with all the
differences added, will give the last formula ; consequently
our general formula, before mentioned,

— x [(2” l)a — (a — n) b + (b — n .
)c — &c]Jj

which approaches to the value of the series a — i + c—d+&c,
is also equivalent to, or reduces to this form,

a a — i
2~ + ~T" + ■2 b + c +

■3b + 3c—d
16

+ & c j

which, it is evident, agrees with the famous differential series.
And this coincidence might be sufficient to establish the truth
of our method, though we had not given other more direct
proof of it. Hence it appears then, that our theorem is of
the same degree of accuracy, or convergencv, as the differ¬
ential theorem ; but admits of more direct and eas}^ applica¬
tion, as the terms themselves are used, without the previous
trouble of taking the several orders of differences. And our
method will be rendered general for literal, as well as for
numeral series, by supposing a, b, c, &c, to represent not
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barely the coefficients of the terms, but the whole terms, both

the numeral and the literal part of them. However, as the
chief use of this method is to obtain the numeral value of

series, when a literal series is to be so summed, it is to be

made numeral by substituting the numeral values of the letters

instead of them. It is further evident, that we might easily
derive our method of arithmetical means from the above dif¬

ferential series, by beginning with it, and receding back to

our theorems, by a process counter to that above given.

9. Having, in Art. 5, 6, 7, 8, completed the investigations

for the first or converging form of series, the first four articles

being introductory to both forms in common; we may now

proceed to the diverging form of series, for which we shall

find the same method of arithmetical means, and the same

general formula, as for the converging series ; as well as the

mode of investigation used in Art. 5 et seq. only changing

sometimes greater for less, or less for greater. Thus then,

reasoning from the table of successive sums in Art. 3, in which

s is alternately above and below the expressions 0, a, a — b ,

a — b + c, &c, because 0 is below, and a above the value s

of the series a — b + c — cl + &c, but 0 nearer than a to that

value, it follows that s lies between 0 and ~a, and that ^a is

greater than s, but nearer to s than a is. In like manner, be¬

cause a is above, and a — b below the value s, but a nearer

that value than a — b is, it follows, that j lies between a and

a — b , and that the arithmetical mean a — lb is below.?, but

that it is nearer to s than a — b is. And thus, the same

reasoning bolding in every pair of successive sums, the arith¬

metical means between them will form another series of terms,

which are alternately greater and less than s, the value of the

proposed series; but here greater and less in the contrary

way to what they were for the converging series, namely,

those steps greater here which were less there, and less here

which before were greater. And this first set of arithmetical

means, will either converge to the value of s, or will at least

diverge less from it than the progression of successive sums.

Again, the same reasoning still holding good, by taking the

arithmetical means of those first means, another set is found,
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which will either converge, or else diverge less than the

former. And so on as far as we please, every new operation

gradually checking the first or greatest divergency, till a

number of the first terms of a set converge sufficiently fast,

to afford a near value of ^ the proposed series.

10. Or, by taking the first terms of all the orders of means,

we find the same set of theorems, namely -

a 3a — bla — 4b-]-clSa—llb+5c — d
—,- , -,-, &c, or in general,
2 4 8 16 ’ ° ’

— x [(2"-l) a- (A-

n — 1

■n) b -f (b — n. ——) c - &c],

which will be alternately above and below s, the value of the

series, till the divergency is overcome. Then this series,

which consists of the first terms of the several orders of means,

maybe treated as the succcessive sums, taking several orders of

means of these again. After which, the first terms of these last

orders may be treated again in the same manner; and so on as

far as we please. Or the series of second terms, or third terms,

&c, or sometimes, the terms ascending obliquely, may be

treated in the same manner to advantage. And with a little

practice and inspection of the several series, whether vertical,

or horizontal, or oblique, for they all tend to the detection

of the same value s, we shall soon learn to distinguish where¬

abouts the required quantity .9 is, and which of the series

will soonest approximate to it.

11. To exemplify now this method, we shall take a few

series of both sorts, and find their value, sometimes by actually

going through the operations of taking the several orders of

arithmetical means, and at other times by using some one of
the theorems

a 3a—b 1 a—4b + c \5a.— \\b-\-5c—d.
&c, at once.4 8 . 16

And to render the use of these theorems still easier, we shall

here subjoin the following table, where the first line, consist¬

ing of the powers of 2, contains the denominators of the

theorems in their order, and the figures in their perpendicu¬

lar columns below them, are the coefficients of the several

terms in the numerators of the theorems, namely, the upper



188 THE VALUATION OF TRACT 8 .

figure, next below the power of 2 , the coefficient of a ; the
next below, that of b ; the third that of c, &c.
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The construction and continuation of this table, is a busi¬

ness of little labour. For the numbers in the first horizontal

line next below the line of the powers of 2, are those powers

diminished each by unity. The numbers in the next hori¬

zontal line, are made from the numbers in the first, by sub¬

tracting from eacli the index of that power of 2 which stands

above it. And for the rest of the table, the formation of it

is obvious from this principle, which reigns through the whole,

that every number in it is the sum of two others, namely, of

the next to it on the left in the same horizontal line, and the

next above that in the same vertical column. So that the

whole table is formed from a few of its initial numbers, by

easy operations of addition.

In converging series, it will be further useful, first to collect

a few of the initial terms into one sum, and then apply our

method to the following terms, which will be sooner valued,

because they will converge slower.

12. For the first example, let us take the very slowly con¬

verging series 1 —l + -j — t + t — ^ + &c, which is known

to express the hyp. log. of 2, which is = •69314718.

Here a — 1, b — c — -J-, d = A, &c, and the value, as

found by theorem the 1st, 2d, 3d, 4th, 10th, and 20th, will
be thus:

1st

2d
2a —b 3 — 1- 2 k

la — tb + c 7-2 +
•666666

I5a-\\b+5c-d 15-5£+l
■68229.

3d

4 th

10th
1023a — 10136 + &c 709-698413

20th
1048575a— 10485556 + &C 726817+5238043
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Where it is evident that every theorem gives always a nearer

value than the former: the 10th theorem gives the value

true to the 3d figure, and the 20th theorem to the 7th figure.

The operation for the 10th and 20th theorems, will be easily

performed by dividing, mentally, the numbers in their re¬

spective columns in the table of coefficients in Art. 11, by

the ordinate numbers 1, 2, 3, 4, 5, 6, &c, placing the quo¬

tients of the alternate terms below each other, then adding

each up, and dividing the difference of the sums continually

five or ten times successively by the number 4: after the

manner as here placed below, where the operation is set down
for both of them.

1. For the 10th Theorem.+
1023

322-666667
127-6

25-142857
1-222222

506-5
212

64-333
7
0-1

1499-631746
789-933333

739-933

4 709-698413
4 177-424603
4 44-356151
4 11-089038
4 2-772259

•693065

2. For the 20th Theorem.+
1048575

349455
20S476
141159-42857143

87180-66666667
39264-54545454
10613-84615385

1446-66666667
79-47058824

1-10526316

1886251-72936456
1159434-27698413

524277-5
261806-25
171146-
113824-5

61666-6
21995-83333333

4318-57142857
387-25

11-72222222
0-05

1159434-27698413

4 726817-45238043
4 181704-36309511
4 45426-09077378
4 11356-52269345
4 2839-13067336
4 709-78266834
4 177-44566708
4 44-36141677
4 11-09035419
4 2-77258855

69314714

Again, to perform the operation by taking the successive

sums, and the. arithmetical means: let the terms 4 , y, 4> & c >

be reduced to decimal numbers, by dividing the common nu¬

merator 1 by the denominators 2, 3,4, &c, or rather by taking

these out of the table printed at the end of this volume, which

contains a table of the square roots and reciprocals of all the

numbers, 1, 2, 3, 4, 5, 6, &c, to 1000, and which is of great
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use in such calculations as these. Then the operation will
stand thus:

The terms.
+ 1
- 0-5
+ 333333
- 25
+ 2
- 163666
+ 142857
- 125
+ 111111
- 1
+ 090909
- 033333

Here, after collecting the first twelve terms, I begin at the

bottom, and, ascending upwards, take a very few arithmetical

means between the successive sums, placing them on the right

of them : it being unnecessary to take the means of the whole,

as any part of them will do the business, but the lower ones

in a converging series best, because they are nearer the value

sought, and approach sooner to it. I then take the means of

the first means, and the means of these again, and so on, till

the value is obtained as near as may be necessary. In this

process we soon distinguish whereabouts the value lies, the

limits or means, which are alternately above and below it,

gradually contracting, and approaching towards each other.

And when the means are reduced to a single one, and it is

found necessary to get the value more exactly, I then go

back to the columns of successive sums, and find another

first mean, either next below or above those before found,

and continue it through the 2d, 3d, &c, means, which makes

now a duplicate in the last column of means, and the mean,

between them gives another single mean of the next order ;

and so on as far as we-see it necessary. By such a gradual

progress we use no more terms nor labour than is quite re¬

quisite for the degree of accuracy required.

Or, after having collected the sum of any number of terms,

we may apply any of the formulae to the following terms.

So, having as above found -653211 for the sum of the first

12 terms, and calling the next or 13th term '076923=#, the

Sue. sums
1
0-5

833333
583333 The several orders of means.
78.3333
616666
759524
634524
745635
645635
736544
653211

688095
697024
690080
695635
691090
694878

692560
693552
G9285S
693362
692984

693056
693205
693110
693173

693131
693158
693142

693144 1 gg3<47
693150 1
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14ti) term '0714285 = 6, the next, '06666 &c = c, and so on:

then the 2d theorem —gives '039835, which added to

•653211 the sum of the first 12 terms, gives -693046, the va¬
lue of the series true in three places of figures ; and the 3d

7tt— 46 -j—c
■ gives -039927 for the following terms,theorem

and which added to -653211 the sum of the first 12 terms,
gives -693138, the value of the series true in five places. And
so on.

13. For a second example, let us take the slowly converg¬
ing series 4.- 4. -f 3.-4 + 4 i + &c, which is = 4- + hyp.
log. of 2 = r 19314718. Then the process will be thus.

Terms. Sue.sums
4- 2 2
- 1-5 G'5
+ 1-333333 1-833333
_ 1-25 0-583333
+ 1-2 1-783333
— L166666 0-616666
+ 1142857 1-759524
— 1-125 0-63+524
+ 1-111111 1-74563.5
— M 0-645635
+ 1-090909 1-736544
- 1-083333 0-653211

Arithmetical means.

l'l 88095
l'l 97024
1-190080
1-195635
1-191090
1-194878

M92560
l'l 93552
M92858
l'l 93362
1-192984

1-193056
1-193205
1-193110
1-193173

131
157
142

144
150 147

Here, after the 3d column of means, the first four figures
1193, which are common, are omitted, to save room and the
trouble of writing them so often down ; and in the last three
columns, the process is repeated with the last three figures of
each number ; and the last of these 147, joined to the first
four, give 1-193 i 47 for the value of the series proposed. And
the same value is also obtained by the theorems used as in the
former example.

14. For the third example, let us take the converging series

1 — 7 +t — T-T-g-— tt+ &c, which is =-7853981 &c, or A- of
the circumference of the circle whose diameter is 1 . Here

a — 1 , 6=4, c — l, &c, then turning the terms into decimals,
and proceeding with the successive sums and means as be¬
fore, we obtain the 5th mean true within a unit in the 6 th
place as here below :
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Terms.
+ 1
- 0-333333
+ 2
- 142857
+ 111111
- 090909
+ 76923
- 66667
+ 58823
- 52632
+ 47619

S.sums

666667
866567
723810
834921
744012
820935
754268
813091
760459
808078

782474
787601
783680
786775
784269

Arithmetical means.

785037
785641
785227
785522

785339
785434
7S5380

785387
785407

785397

15. To find the value of the converging series

l a l*.3* _ 1*.3*.5* 1*.3*.5*.T
~W + 2 2 . 4 " 2 *74 *76 * 2 * . 4 * . 6 * . 8 *

which occurs in the expression for determining the time of a

body’s descent down the arc of a circle.

The first terms of this series I find ready computed by

Mr. Baron Maseres, pa. 219 Philos. Trans. 1777 ; these be¬

ing arranged under one another, and the sums collected, &c,

as before, give *834625 for the value of that series, being

only 1 too little in the last figure.
Terms.

+ 1
- 0-25
+ 140625
- 97656
+ 74768
- 60562
+ 50389
- 43879
+ 38565
- 34399
+ 31045

S. sums

75
890625
792969
867737 Arithmetical means..

807175
858064
814185
852750
818351
849396

832620
836124
833468
835550
833S73

834372
834796
834509
834711

834584
834652
834610

834618 I 334005
834631 |

16. To find the value of 1 -A-f-■§■—-To+vV - & c > consisting

of the reciprocals of the natural series of square numbers.
Terms.

+ 1
- 0-25
+ 111111
- 625
+ 4
- 27778
+ 20408
- 15625
+ 12346- 1
+ 08264
- 6944
+ 5917

S.sums

75
861111
798611
838611
810833
831241
815616
827962
817962
826226
819282
825199

Arithmetical means.

823429
821789
822962
822094
822754
822240

822609
822376
822528
822424
822497

822492
822452
822476
822460

S3J472
822464
822468

822468
822466

822467

VOL. I. O
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The last mean *822467 is true in the last figure, the more

accurate value of the series 1 — £ + ? — tb' + & c > being
•8224670 &c.

17. Let the diverging series £ — t + t — v + & c > be

proposed ; where the terms are the reciprocals of those in
Art. 13.

Terms.
+ 5
- 666666
+ 75
- 8
+ 833333
- 857143
+ 875
- 888889
+ 9
- 909091
+ 916667

Sue. sums
+ 5
- 1666C6
+ 583333
- 216666
+ 616666
- 240476
+ 634524
- 254365
+ 645635
- 263456
+ 653211

Arithmetical means.

188095
197024
190080
195635
191090
194878

192560
193552
192858
193362
192984

193056
193205
193110
193173

131
157
142

144 |
150

147

Here the successive sums are alternately + and —, as "’ell

as the terms themselves of the proposed series, but all the

arithmetical means are positive. The numbers in each co¬

lumn of means are alternately too great and too little, but so

as visibly to approach towards each other. The same mu¬

tual approximation is visible in all the oblique lines from left

to right, so that there is a general and mutual tendency, in

all the columns, and in all the lines, to the limit of the value

of the series. But with this difference, that all the numbers

in any line descending obliquely from left to right, are on

one side of the limit, and those in the next line in the same

direction, all on the other side, the one line having its num¬

bers all too great, while those in the next line are all too

little; but, on the contrary, the lines which ascend from be¬

low obliquely towards the right, have their numbers alter¬

nately too great and too little, after the manner of those in

the columns, but approximating quicker than those in the

columns. So that, after having continued the columns of

arithmetical means to any convenient extent, we may then

select the terms in the last, or any other line obliquely as¬

cending from left to right, or rather beginning with the last

found mean on the right, and descending towards the left;

then arrange those terms below one another in a column, and
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take their continual arithmetical means, like as was done with

the first succesive sums, to such extent as the case may re¬

quire. And if neither these new columns, nor the oblique

lines approach near enough to each other, a new set may

alternately too great and too little. And thus we may pro¬

ceed as far as we please. These repetitions will be more

necessary in treating series which diverge more; and having

here once for all described the properties attending the series,

with the method of repetition, we shall only have to refer to

them as occasion shall offer. In the present instance, the last

two or three means vary or differ so little, that the limit may

be concluded to lie nearly in the middle between them, and

therefore the mean between the two last 144 and 150, namely

147, may be concluded to be very near the truth, in the last

three figures; for as to the first three figures 193, repetition

of them is omitted after the first three columns of means, both

to save space, and the trouble of writing them so often over

again. So that the value of the series in question may be

concluded to be ‘193147 very nearly, -which is =—~ -f-

the hyp. log. of 2; or 1 less than its reciprocal series in
Art. 13.

&c. Here, first using some of the formulas, we have by the

be formed from one of their oblique lines which has its terms

18. Take the diverging series- 4

5.7 5.7.9 S.7.9.11

4.6 1 4.6.8 4.6.8.10

3 a—b
•5 7292,

la—4b + c
■56966,

. 15a-llb + 5c—d
4th.- = ‘56917.

3\a-26b+16c-6d+e

= ‘56917.

= -56907. &c.

Or, thus, taking the several orders of means, &c.
o 2
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Terms. Sue. sums.
+ 1-25 + 1-25 520833

611980
529948
605144
535320
600780
538956

Arithmetical means.

_ 1-458333 — 0-208333
+ 1-640625 + 1-432292— 1-804688 — 0-372396
+ 1-955079 + 1-582683
— 2-094727 - 0-512044
•f 2-225647 + 1-713603

566406
570964
567546
570232
568050
569868

2-349294 — 0’635691

Here the successive sums are alternately + and —,but the
arithmetical means are all -{-• After the second column of
means, the first two figures 56 are omitted, being common ;
and in the last three columns the first three figures 569, which
are common, are omitted. Towards the end, all the num¬
bers, both oblique and vertical, approach so near together,
that we may conclude that the last three figures 035 are all
true; and these being joined to the first three 569, we have
•569035 for the value of the scries, which is otherwise found =

After the second column of means, the first four figures
1/943 are omitted, being common to all the following co¬
lumns ; to these annexing the last three figures 14-7 of the
last mean, we have 1'94314-7 for the sum of the series, which

Simp. Dissert. Ex. 2. p. 75 and 76.
And the same value might be obtained by means of the

formulae, using them as before.

6
= -56903559 &c.

8i + &c.6f +7H + s-

19. Let us take the diverging series
” — r + F — t + &c, or i — i + Vs — V + &c *

Terms.
+ 4
- 4-5
-f- 5-333333
- 6-25
+ 7-2
- 8-166666
+ 9-142857
- 10-125
+ ll’l 1 till
— 12-1
+ 13-090909
- 14-083333

Sums.
+ 4-
- 0-5
+ 4-833333
- 1-416666
+ 5-783333
_ 2-383333
+ 6759524
- 3-365476
+ 7-745635
- 4-354365
+ 8-736544
- 5-346789

2-188096
1-697024
2- 190080
1-695635
2- 191089
1-694877

Arithmetical means.

1-942560
1-943557
1-942857
1-943362
1-942983

Vve otherwise know is equal to + hyp. log. of 2. See
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20. Taking the diverging series 1 — 2 + 3 — 4 + 5 — &c,

formed from the radix (——)- = --- = , by di-

viding 1 by 1 + 2 + 1; the method of means gives us the

following. Terms,
+ 1

- 2
+ 3
- 4
+ 5
- 6

Sums
+ 1
- 1
+ 2
- 2
+ 3
_

Means.

0
l'i.
0
i
o

Where the second, and every succeeding column of means,

gives for the value of the series proposed.

In like manner, using the theorems, the first gives but

the second, third, fourth, &c, give each of them the same

value i; thus :

a

~2 ~ *

3 a-b _ 3-2_1_
4 4 4

la-lb+c 7 — 8 + 3 2 1

' 8 — 8 ~ 8 — T

15a- llb + 5c-d 15- 22 + 15-4 4 1

] 6 = T6 ~ 16 = 4

21. Taking the series 1—4 + 9— 16 + 25 — 36 + &c,

whose terms consist of the squares of the natural series of

numbers, we have, by the arithmetical means.

Terms
+ 1- 4
+ 9
- 16
+ 25
- 36

Where it is only in the second column of means that the

divergency is counteracted ; after that the third and all the

other orders of means give 0 for the value of the series

1 _ 4 + 9 — 16 + &c.

Sums.
+ 1- 3
+ 6
- 10
+ 15
- 21

Arithmetical means.
- 1

2
213

+ i
- i
+ *
- i
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The same thing takes place on using the formula:, for
a —

— i

3a—b 3—4 _
4 4 4

la-4b + c 7-16+9 0 _
8 ~ 8 “ 8 —

1 Sa—nb + 5c-d 1.5-44 + 45-16 0 _ r
16 = 16 ~ 16“

where the third and all after it give the same value 0.

22. Taking the geometrical series of terms 1—2+4 —8 +

&c, derived from the radix—— =—, by actually dividing

1 by 1 + 2.

Terms. Sums.
+ 1 + 1
- 2 - 1
+ 4 + 3
— 8 - 5
+ 16 + 11
— 32 - 21
+ 64 + 43
- 128 - 85
+ 256 + 171

Arithmetical means.

+ 4
3
s STff3+ 4
i

0
+ 1
- 1

*
0

+ 1

i

1
0

+ 3 — 1
- 5 + 3 + 1

- 1
&c.+ 11 - 5

Here the lower parts of all the columns of means, from
the cipher 0 downwards, consist of the same series of terms
-+1 — 1 + 3 — 5 + 11 — 21 + 43 — 85 + &c, and the
other part of the columns, from the cipher upwards, as well
as each line of oblique means, parallel to, and above the
line of ciphers, forms a series of terms + {, -rs • • • •
1 2 1' ± 1

3 ¥~~’
alternately above and below the value of the series,

■J, and approaching continually nearer and nearer to it, and
which, when infinitely continued, or when n is infinite, the
term becomes for the value of the geometrical series,
1 _2 + 4 — 8 + 16 — &c.

And the same set of terms would be given by each of the
formula?.
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23. Taking the geometrical series 1—3 + 9 —27+81 —&c,

obtained from the radix —— —, by dividing 1 by I +3,1+3 4
Terms. Sums. Arithmetics

+ 1
— 3

+ 1
- 2

+ i
— *

0
+ 1 + h

- *+ 9 + 7 + 2* — 2
- 27 - 20 - 6* + 7 + 2*
+ 81 + Cl + 20* - 20 - 6 i

o
+ l
— 2
+ 7

41
4

2*1

0
+ 1
- 2

+ i
- i

Here the column of successive sums, and every second column
of the arithmetical means, below the 0, consists of the same
series of terms 1,-2, +7, —20, + &c, while all the other
columns of means consist of this other set of terms*, —
+2*, — 6*, + &c ; also the first oblique line of means, *, 0,
-J-, 0, *, 0, &c, consists of the terms * and O alternately, which
are all at equal distance from the value of the series proposed
1 — 3+ 9 — 27 + 81 — &c, as indeed are the terms of all the
other oblique descending lines. And the mean between every
two terms gives *- for that value. And the same terms would
be given by the formulae, namely alternately * and 0.

And thus the value of any geometrical series, whose ratio

or second term is r, will be found to be = —-—.1+r

24. Finally, let there be taken the hypergeometrical series
1 - 1+2-6 + 24- !20 + &c = l —1 a+2b — 3c+4d —5e +
&c ; which difficult series has been honoured by a very con¬
siderable memoir written on the valuation of it by the cele¬
brated L. Euler, in the New Petersburg Commentaries,
vol. v, where the value of it is at length determined to be
■5963473 &c.

To simplify this series, let us omit the first two terms
1 — 1 = 0, which will not alter the value, and divide the re¬
maining terms by 2, and the quotients will give 1 — 3 + 12 —
60 + 360 - 2520 + &c; which, being half the proposed
series, ought to have for its value the half of '596347 &c,
namely '298174 nearly.

Now, ranging the terras in a column, and taking the sums
and means as usual, we have



200
THE VALUATION OF TRACT 8.

Terms.
+ J_ 3
+ 12_ 60
+ - 360
_ 2520
+ 20160

Sums.
f i

2
h 10
- 50
h 310

— 2210
+ 17950

+ i
~ i+ 4
- 20
+ 130
- 950

+ 78701'

Arithmetical means.

0

8
55

410
3460

S ?23|ml
1525

11250
10-1875
77-

673-75

4-53125
33-40625

298-375 132-tsl373p-° 23438

Where it is evident, that the diverging is somewhat dimi¬

nished, but not quite counteracted, in the columns and ob¬

lique descending lines, from beginning to end, as the terms

in those directions still increase, though not quite so fast as

the original series ; and that the signs of the same terms are

alternately + and —, while those of the terms in the other

lines obliquely ascending from left to right, are alternately

one line all +, and another line all —, and these terms con¬

tinually decreasing. The terms in the oblique descending

lines, being alternately too great and too little, are the fittest
Taking therefon any one of thoseto proceed with aga

lines, as suppose the first, and ranging it vertically, take the

means as before, and they will approach nearer to the value

of the series, thus :
+ -5
- -o
+ -875
- 1-125
+ 4-53125
-14-4375
+ 59023438

+ -25
+ -4375
- -1250
+ 1-703125
- 4-953125
+ 22-292969

+ -34375
+ -15625
+ -789062
-1-625
+ 8-6699221

+ -25
+ -472656
- -417969
+ 3-522461

+ -361328
+ -027344
+ 1-552246

194336
7897951 492066

Here the same approximation in the lines and columns, to¬

wards the value of the series, is observable again, only in a

higher degree; also the terms in the columns and oblique

descending lines, are again alternately too great and too

little, but now within narrower limits, and the signs of the

terms are more of them positive ; also the terms in each ob¬

lique ascending line, are still either all above or all below the

value of the series, and that alternately one line after another,

as before. But the descending lines will again be the fittest

to use, because the terms in each are alternately above and

below the value sought. Taking therefore again the first of

these oblique descending lines, and treating it as before, we
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obtain sets of terms approaching still nearer to the value,
thus:

columns, is still more visible, and the deviations restricted

within narrower limits, the terms in the oblique ascending

lines still on one side of the value, and gradually increasing,

while the columns and the oblique descending lines, for the

most part, have their terms alternately too great and too

little, as is evident from their alternately becoming greater

and less than each other: and from an inspection of the

whole, it is easy to pronounce that the first three figures of

the number sought, will be 298. Taking therefore the last

four terms of the first descending line, and proceeding as

before, we have

And, finally, taking the lowest ascending line, because it has

most the appearance of being alternately too great and too

little, proceed with it as before, thus :

where the numbers in the lines and columns gradually ap¬

proach nearer together, till the last mean is true to the nearest

unit in the last figure, giving us •298174 for the value of the

proposed hypergeometrieal series 1 — 3 + 12—60 + 360 —

2520 + 20160 — &c.

And in like manner are we to proceed with any other series

whose terms have alternate signs.
Royal Military Academy,

Woolwich, May, 1780,

25
296875
296875
305664
277832
343201

361328
194336
492066

34375
25

296875
301271
291748
310516

29S073
296509
301132

297791
298821 298306

Here the approach to an equality, among all the lines and

296S75
299073
297791
298306

297974
298432
298048

298203
298240 298222
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POSTSCRIPT.

Since the foregoing method was discovered, and made
known to several friends, two passages have been offered to
my consideration, which I shall here mention, in justice to
their authors, Sir I. Newton, and the late learned Mr. Euler.

The first of these is in Sir Isaac’s letter to Mr. Oldenburg,
dated October 24, 1676, and maybe seen in Collins’s Com-
mercium Epistolicum, p. 177, the last paragraph near the
bottom of the page, namely, Per seriem Leibnitii etiam, si
ultimo loco dimidium termini adjiciatur, et alia qiuedam simi-
lia artificia adhibeantur, potest computum product ad midtas
figures. The series here alluded to, is 1 — -f+f — -f— T'T +
&c, denoting the area of the circle whose diameter is 1 ; and
Sir Isaac here directs to add in half the last term, after hav¬
ing collected all the foregoing, as the means of obtaining the
sum a little exacter. And this, indeed, is equivalent to taking
one arithmetical mean between two successive sums, but it
does not reach the idea contained in my method. It appears
also, both by the other words, et alia qua;dam similia artificia
adhibeantur, contained in the above extract, and by these, alias
antes adhibuissem,a little higher up in the same pa. 177, that
Sir Isaac Newton had several other contrivances for obtaining
the sums of slowly converging series; but what they were,
it may perhaps be now impossible to determine.

The other is a passage in the Novi Comment. Petropol.
tom. v. p. 226, where Mr. Euler gives an instance of taking
one set of arithmetical means between a series of quantities
which are gradually too little and too great, to obtain a nearer
value of the sum of a series in question. But neither does
this reach the idea contained in our method. However, I
have thought it but justice to the characters of these two
eminent men, to make this mention of their ideas, which have
some relation to my own, though unknown to me at the tim»
of my discovery .
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TRACT IX.

A METHOD OF SUMMING THB SERIES a + bx + CX l + dx 3 -j-

ex* + Kc, WHEN IT CONVERGES VERY SLOWLY, NAMELY,
WHEN X IS NEARLY EQUAL TO 1, AND THE COEFFICIENTS

a, b, c, d, Kc, decrease very slowly : the signs of
ALL THE TERMS BEING POSITIVE.

ARTICLE I.

When there is occasion to find the sum of such series as
that above-mentioned, having the coefficients a, b, c, d, &c,
of the terms, decreasing very slowly, and the converging
quantity x pretty large ; the sum cannot be found by col¬
lecting the terms together, on account of the immense num¬
ber of them which it would be necessary to collect; neither
can it be summed by means of the differential series, because

X
the powers of the quantity -—-will then diverge faster than

the differential coefficients converge. In such case then we
must have recourse to some other method of transforming it
into another series which shall converge faster. The follow¬
ing is a method by which the proposed series is changed into
another, which converges so much the quicker as the original
series is slower.

2. The method is thus. Assume — = the given series

d be =

a + bx + cx % -f- dx 3 + Ac. Then shall
a 1

a+6jr+cjr I -l-&c
b1 C2bc b 3

-{c--)s?-(d - ~+-)x 3 -(e-

; which, by actual division, is=a — bx

2bd.-\-c l 3b*c b 4
a ' 1 a ‘ a“ ' a + ~~

See. Consequently a z divided by this series will be equal to
the series proposed ; and this new series will be very easily
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summed, in comparison with the original one, because all the
coefficients after the second term are evidently very small;
and indeed they are so much the smaller, and fitter for sum¬
mation, by how much the coefficients of the original series
are nearer to equality; so that, when these a, b, c, d, &c, are
quite equal, then the third, fourth, &c, coefficients of the new
series become equal to nothing, and the sum accurately equal

to-- 7— =-=-- ; which is also known to he truea—bx a — ax 1 —.r
from other principles,

3. Though the first two terms, a — bx, of the new series,
be very great in comparison with each of the following terms,
yet these latter may not always be small enough to be entirely
rejected when much accuracy is required in the summation.
And in such case it will be necessary to collect a great num¬
ber of them, to obtain their sum pretty near the truth ; be¬
cause their rate of converging is but small, it being indeed
pretty much like to the rate of the original series, but only
the terms, each to each, are much smaller, and that commonly
in a degree to the hundredth or thousandth part.

4 . The resemblance of this new series however, beginning
with the third term, to the original one, in the law of pro¬
gression, intimates to us that it will be best to sum it in the
very same manner as the former. Hence then putting

b za! — c -,

V - d
2bc bl

+ a2’a

2 bd + c
a + 3 b 2c b±

ar a 3’
Sec,

and consequently the proposed series a + bx -f- ex'1 -f- &c,
d1 a z

~~a — bx — a'x z — b'x 2 — 1\ r 4 &e “a — bx — x 2 x {a + A.r-)-f'.r2&cj
by taking the sum of the series a! + b'x + e'xr + &c, by the
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very same theorem as before, the sum s of the original series

will then be expressed thus, s

a — bx —■
a ~ x~

V % 2b'c'
b’x — (c' -r).!' 1 ~{d> -r

b'3 ’
+ vl)^ 3 - See;

a a a

where the series in the last denominator, having again the

same properties with the former one, will have its first two

terms very large in respect of the following terms. But these

first two terms, a' — b'x, are themselves very small in compa¬

rison with the first two, a — bx, of the former series ; and

therefore much more are the third, fourth, &c, terms of this

last denominator, very small in comparison with the same

a—bx: for which reason they may now perhaps he small

enough to he neglected.

5. But if these last terms he still thought too large to he

omitted, then find the sum of them by the very same theorem :

and thus proceed, by repeating the operation in the same

manner, till the required degree of accuracy is obtained.

Which it is evident, will happen after a small number of re¬

petitions, because that, in each new denominator, the third,

fourth, &c, terms, are commonly depressed, in the scale of

numbers, two or three places lower than the first and second

terms are. And the general theorem, denoting the sum s

when the process is continually repeated, will he this,
aa

a — bx - ■
a a xx

a' — b'x — —

a"-b". v —
a a xx

h'"
0'"x —

a"a'\rx

a'" — b" x etc.

6. But the general denominator d in the fraction —, which

is assumed for the value of s or a + bx cx % + &c, may

be otherwise found as below ; from which the general law of
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the values of the coefficients will be rendered visible. Assume
s or a + bx + cx z + &c,

az a z
; then shallor — —

D

az *= a -f- bx
= az -\-abx -J-

— ab —

a — bx —■a'x 1 — b'x 2 — c\r 4 — &c
cx z + &c X a — - bx •— a,

acx z + adx 3 + aex‘* + afx*
■bb — be — bd — be
•da -— ab — dc — a’d

— b'a — b'b _ h'c
— ca — cb

— d'a.

b'xi — & c

Hence, by equating the coefficients of the like terms to no¬
thing, we obtain the following general values :

bb

b’ — d-

c’ = e-

d'=f-

e'=g-
&c.

a
ba'-\-cb

a ’
bb’ -\-ca'-\-db

a *
be'+eb' -j-da'-j-eb

a ’
bd' -\-cc' -\-db’ -\- ea'-\-fb

Where the values of the coefficients are the same in effect
as before found, but here the law of their continuation is
manifest.

7. To exemplify now the use of this method, let it be
proposed to sum the very slow series x + ~x z + fx* + &c.

when x = = "9, denoting the hyp. log. of -->or,in

this case, of 10.
Now it will be proper, in the first place, to collect a few

of the first terms together, and then apply the theorem to
the remaining terms, which, by being nearer to an equality
than the terms are near the beginning of the series, will be
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fitter to receive the application of the theorem. Thus to
collect the first 12 terms:

No.
1

2
3
4
5
6

7

8

9
10
11
12

Powers of ».
•9 - - -
•81 - - -

■129 - - -
•6561 - -

•59049 - -

•531441

•4782969 -

•43046121 -
•381420489

•3486784401
•31381059609
•282429536481

The first 12 terms, found by dividing x, x 5, x3,
■9 &c, by the numbers 1, 2, 3, &c,
•405

•243

■164025

•118098

•0885735

■06832812857

•05380840125

•043046721
•03486184401
•02852823601
•02353579411

13 •2541865828329 2 - l7081162555 the sum of 12 terms.

Then we have to find the sum of the rest of the terms after

these first 12, namely of jt' 3 x ( Ti r +- ri r r + rV r3 + & c )>

in which x — -9, and x n — •2541865823329 ; also a — ^ T ,

b — c — tj, &c, and the first application of our rule,

gives, for the value of ^ + T'T .r + T'T x’ + &c, or s,

-0059 17159763 &c
•012637363-x 2 x :-UU03iU136 + -000279397* + •00U233j92i' 1+ &c

the second gives
•00591715976

•012637363 -

the third givesD

■0003401 367T 1
•00U08S678 - x2 x : -000004086 + -000003060* + &c ’

■00591715976

*012637363 —
•00034013 6\r 2

•000088678-
•000004087 2.r J

the fourth gives

•000001333 -x 2 x :'000000089+ &c

•00591715976

•012637363 —
•000340136vr z

•00008867S—
0000040877r 2

•000001333 - •001.00008 9 2x*

•0000000344
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Or, when the terms in the numerators are squared, it is•00591715970

•012637363 — •000000093710985

•000088678 —
•000000000013526212

•000001333-
•000000000000006416

•0000000344

Or, by omitting a proper number of ciphers, it is•0591715976

•12637363-
•00937109S5

•8S67S —
•013526212 '

1333 •006416

•3-14—”s

An unknown quantity z is here placed after the last denomi¬
nator, to represent the small quantity to be subtracted from
the said denominator 344. Now, rejecting the small quan¬
tity z, and beginning at the last fraction to calculate, their
values will be as here ranged in the first annexed column.

Fractions.
•518200000

1218931
11799

187

1. Ra. 2. Ra. 3. Ratio,

425 4-01106 2-39
63 1 -68

63=
1-68 x 187

1S7 187 63 z

44 T43 ITS

4. Ratio.

2-39 X 63 s
1- 68x 187

2- 03

placing z below them for the next unknown fraction. Divide

then every fraction by the next below it, placing the quotients

or ratios in the next column. Then take the quotients or
2’39 x 63s

ratios of these ; and so on till the last ratio ————which,1 Uo X lo I

from the nature of the series of the first terms of every co¬
lumn, must be less than the next preceding one 2'39: con-

, , i T68 x 187 , . „
scqucntly z must be less than -—-, or less than 5. isut,

from the nature of the scries in the vertical row, or column

of first ratios, must be less than 63 ; and consequently

ss must be greater than EV, or greater than 3. Since then
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z is less than 5 and^greater than 3, it is probable that the

mean value 4 is near the truth : and accordingly taking 4 for

z, or rather 4'3, as z appears to be nearer 5 than 3, and

taking the continual ratios, as placed along the last line of the

table, their values are found to accord very well with the

next preceding numbers, both in the columns and oblique
rows.

Hence, using -043 for z in the denominator ’344 —z of the

last fraction of the general expression, and computing from

the bottom, upwards through the whole, the quotients, or

values of the fractions, in the inverted order, will be
213

12079

1223397

•518414000

of which the last must be nearly the value of the series

T’T 4- tV^ + rV r " + &c, when x = -9.

Then this value '518414 of the series, being multiplied by

x' 3 or ‘2541865828329, gives ’1317738 for the sum of all the

terms of the original series after the first 12 terms; to which

therefore the sum of the first 12 terms, or 2T7081162, being

added, we have 2’30258542 for the sum of the original series
x 4- ±x z 4- i.r 3 4- ±x* 4- &c. Which value is true within

about 3 in the 8th place of figures, the more accurate value

being 2*30258509 &c, or the hyp. log. of 10.

N. B. By prop. 8 Stirling’s Summat.; and by cor. 4, p. 65

Simpson’s Dissert, the series a + bx + ex' 1 4- dx 3 4- &c,
transforms to

— X Ca - D (^) +D '(^- D '^)3 +D ,( r ^_ r _ ] .

And thus the series x + xx 1 + fx 3 4- &c, becomes

may be summed by our method.

VOL. I. f*
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TRACT X.

THE INVESTIGATION OF CERTAIN EASY AND GENERA!

RULES, FOR EXTRACTING ANY ROOT OF A GIVEN

NUMBER.

1. The roots of given numbers are commonly to be. found,
with much ease and expedition, by means of logarithms, when

the indices of such roots are simple numbers, and the roots

are not required to a great number of figures. And the square

or cubic roots of numbers, to a good practical degree of ac¬

curacy, may be obtained, by inspection, by means of my

tables of squares and cubes, published by order of the Com¬

missioners of Longitude, in the year 1781. But when the in¬

dices of such roots are complex or irrational numbers ; or

when the roots are required to be found to a great many

places of figures; it is necessary to make use of certain ap¬

proximating rules, by means of the ordinary arithmetical

computations. Such rules as are here alluded to, have only

been discovered since the great improvements in the modern

algebra: and the persons who have best succeeded in their

enquiries after such rules, have been successively 7 Sir Isaac

Newton,. Mr. Raphson, M. de Lagney, and Dr. Halley; who

have shown, that the investigation of such theorems is also

useful in discovering rules for approximating to the roots of

all sorts of compound algebraical equations, to which the

former rules, for the roots of all simple equations, bear a con¬

siderable affinity 7. It is presumed that the following short

tract contains some advantages over any other method that

has hitherto been given, both as to the ease and universality

of the conclusions, and the general way in which the investi¬

gations are made: for here, a theorem is discovered, which,,

though it be general for all roots whatever, is at the same time
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very accurate, and so simple and easy to use and to keep in

mind, that nothing more so can be desired or hoped for; and

further, that instead of searching out rules severally for each

root, one after another, our investigation is at once for any

indefinite possible root, by whatever quantity the index is

expressed, whether fractional, or irrational, or simple, or

compound.

2. In every theorem, or rule, here investigated,
N denotes the given number, whose root is sought,
n the index of that root,

a its nearest rational root, or a” the nearest rational power
to n, whether greater or less,

.r the remaining part of the root sought, which may be

either positive or negative, namely, positive when n is

greater than a ", otherwise negative. Hence then, the

given number
i

n is = (a 4- x)”, and the required root n" = a 4- x.

3. Now, for the first rule, expand the quantity (a 4 x)" by

the binomial theorem, so shall we have

n — (ct + .r)“ = a” + na”~ 1x 4- n . — -- a” - Zx 1 + &c.

Subtract a n from both sides, so shall
71 — 1n — a” = n a'^'x + n . ——a"~V + &c.

Divide by na n ~ t , so shall
N — a" n — a" n — 1 x 1 n—\n — 2x 3
—~i or-— x a = x -(----+— -—- •— + &c.n a na 2 a 2 3 a z

Here, on account of the smallness of the quantity x in respect

of a, all the , terms of this series, after the first term, will be

very small, and may therefore be neglected without much
N — CLn

error, which gives- -a for a near value of x, being only a

small matter too great. And consequently
N + («-l)a” .

a + x =-,— a is nearly
n a " J

this may be accounted the first theorem.
V 2

n” the root sought. And

i
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4. Again, let the equation n = a" + n re” -1 x + &c, be

multiplied by n — 1, and a n added to each side, so shall we
have

(?z— 1) N + a" = na" + (n — l) .na”~ lz + &c, foradivisor:

Also multiply the sides of the same equation by a and subtract

a" + 1 from each, so shall we have
1

(N — a n) a —11 a" x -\- n . - a n ~ l x‘l + &c, for a dividend :
2

Divide now this dividend by the divisor, so shall
jij _ yi — 1 r >z -n — 1 n. — 9. .v*

Which will be nearly equal to x, for the same reason as be¬

fore ; and this expression is about as much too little as the

former expression was too great. Consequently, by adding

theorem, and which is nearly as much in defect as the former
was in excess.

5. Now because the two foregoing theorems differ from

the truth by nearly equal small quantities, if we add toge¬
ther the two numerators and the two denominators of the

foregoing two fractional expressions, namely
N+(n — l)a” , jin , .... .
- 1- a and ;- t -the sums will be the numera-

11 a n (m— l).N + fl”

tor and denominator of a new fraction, which will be much

nearer than either of the former. The fraction so found is

K+l.Nfn-l.d" ,. . ... , , . f-
- a : which will be very nearly equal to n >
«—l.N + n+l.a" j j l

or a + x, the root sought; for, by division,, it is found to be

wanting which contains the square of x, and the following

terms are very small. And this is the third theorem.

6. A fourth theorem might be found by taking the arith¬

metical mean between the first and second, which would be

( n — l) n + a"

x

e, we have a + x or n" nearly = (11- l)N + fl"’

?ZN«
for a second
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( 5-i^—i—— _j_-~ N —-) x — ; which will he nearly of thena" ?2-l.N+a"' 2 ’ J

same value, though not so simple, as the third theorem; for

this arithmetical mean is found equal to
n— 1 n — 2 x 3

7. But the third theorem may be investigated in a more

jjn + q a”

general way, thus: Assume a quantity of this form^—

with coefficients p and g to he determined from the process;

the other letters n, a, n, representing the same things as be¬

fore ; then divide the numerator by the denominator, and

make the quotient equal to a + x, so shall the comparison of

the coefficients determine the relation between p and q re¬

quired. Thus, n— 1
pn + qa" — (p + q)a”+pna n ~ l x+pn.

q N + pa”= (p ■+- q)an +qna”~ 1 X + qn.—
n— 1

x l q- &c.

x z 4- &e.

then dividing the former of these by the latter, we havean ^ x z

y ) - + &c.

W + p — q p — q n— l
i -—„ sora4^=«4-— ~nx+ — ~n{
yN4/w p + q P + q V 2 p + q a

Then, by equating the corresponding terms, we obtain these

three equations

a = a,

P~9.
p + q
n— 1

= 1,

J1

P+9

qn
1 — i= 0.

■and p : q :: n + 1 : n — 1.From which we find -—- =p + q n

So that, by substituting 7t+l and n — 1, or any quanti-

r.ities proportional to them, for p and q, we shall have

72+ 1 . N + 72 - l -a" c , . ,
■—:-;-- na tor the value or the assumed quantity

H— 1 . N4-n+1 . a n 1 J



214
A GENERAL RULE TRACT 10.

ftN+ya which is supposed nearly equal to a 4- -v, the re-
fN+jOa” r J 1

quired root of the quantity n.

,, .. . , n+ 1 . n +«-1 . a" i
8. Now this third theorem --- -a = n ,

n— 1 . N + n- 1-1 . a

■which is general for roots, whatever be the value of n, and

whether a" be greater or less than n, includes all the rational

formulas of De Lagney and Halley, which were separately

investigated by them ; and yet this general formula is per¬

fectly simple and easy to apply, and easier kept in mind than

any one of the said particular formulas. For, in words at

length, it is simply this: to ra4- 1 times n add n— 1 times a ”,

and to ii — 1 times n add n + 1 times a", then the former sum

multiplied by a and divided by the latter sum, will give thex.

root n” nearly ; or, as the latter sum is to the former sum,

so is a, the assumed root, to the required root, nearly.

Where it is to be observed that a" may be taken either

greater or less than n, but that the nearer it is to it, the
better.

9. By substituting for 11, in the general theorem, severally

the numbers 2, 3, 4, 5, &c, we shall obtain the following

particular theorems, as adapted to the 2d, 3d, 4th, 5th, &o,

roots, namely, for the

2d or square root

3d or cube root,

4th root - -

Sth root - -

6th root - -

Sn + e 1

5 n + 3<r a

4n + 2 a 3■— --

2N + 4 fl 3

5 n 4- 3a 4

3n f 5c 4 '

6N 4- 4c 5

4 n 4- 6

7n 4- 5a 6

5n -b la b
8 n 4- 6 a 1

- - - - = N

2 n 4- a 3 +
or -■ „ -a = N

n 4 - 2o 3

-a = n t

a, or
3n + 2c s 4- —a = n

2N 4- 3c s

- - - = N

4n 4- 3a 7

6n 4- 8 (S 0 ’ 01 3n 4- 4c 7
a = N'1th root
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10. To exemplify now our formula, let it be first required
to extract the square root of 365. Here N = 365, n = 2,
the nearest square is 361, whose root is 19.

Hence 3n + c? = 3 X 365 + 361 = 1456,
and n f 3 a 1 = 365 + 3 x 361 = 1448;

then as 1448 : 1456 19 : 19 X 182

181
= 19*9 =19-10497 &c.

Again, to approach still nearer, substitute this last found

root 19 x 182

181 '
for a, the values of the other letters, remain¬

ing as before, we have a* 19 2 X 18 2 1 3458’

3n + a z = 3 x 365 +

1ST
345 8*
T8F :

; then181

47831059

32~76i 5

N + 2a z = 365 +

3 x 3458 1 47831057
181 2 ; hence

19 X 182

47831057 : 47831059 : : lQ1 - or181

32761
3458.3458x47831059
181 ' 181 x 47831057

= the root of 365 very exact, which being brought into de¬
cimals, would be true to about 20 places of figures.

11. For a second example, let it be proposed to double
the cube, or to find the cube root of the number 2.

Here n = 2, n = 3, the nearest root a — 1, also a 3 =; I.
Hence 2n + a 3 = 4 + 1 = 5,

and N + 2a 3 = 2 + 2= 4;
5

then as 4 : 5 : : 1 : — = 1‘25 = the first approximation.

Again, take a = -j-, and consequently a 3
125

"64 ’

TT , 125 381
Hence 2n + a 3 = 4 + —— =-,64 64 ’

, , .250 378
and N + 2a 3 = 2 + --= --;‘ 64 64 ’

5 5 127 635
then 378 : 381, or as 126 : 127 :: - : ~x 77 ^=-.—= 1*259921,4 4 126 504 5

for the cube root of 2, which is true in the last figure.
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And by taking for the value of a, and repeating the

process, a great many more figures may be found.

12. For a third example let it he required to find the 5th
root of 2.

Here n = 2, n — 5, the nearest root a = 1,

Hence 3n + 2a 5 =6 + 2=8,

and 2 n + 3a 5 = 4 + 3 = 7;g
then as 7 : 8 : : 1 : — = 1+ for the first approximation.

= 1T48698 &c, for the 5th root of 2, true in the last figure.

13. To find the 7th root of 126+

Here n= 126-}, n — 7, the nearest root a = 2, also a 1 = 128.
4444

Hence 4n + 3a 7 = 5044 + 334 = 888* = — 5

one operation, being true to the nearest unit in the last

figure.

14. To find the 365th root of J'05, or the amount of 1

pound for l day, at 5 per cent, per annum, compound in¬
terest.

Here n = T05, n = 365, a — 1 the nearest root.

Again, taking a = —, we have

N + - 6 + —— =
65536 16637865536

16S07

98304

16807
2n + 3 a s

165532

16807*

then 165532
8 8 83189 4 83189 332756

82766 — 7 41383 289681

and 3 n + 4a 7 = 378 7 + 512 = 890-} = -j- ;

4453

then 4453 : 4444 :: 2 : -- = T995957, root very exact by4453

Hence 366n + 364ff = 748'3,

and 364n + 366« = 748-2;
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then as 748-2 748-3 : 1 : 7483 _ , t

7482 “ 1tttt
= 1-00013366,

the root sought, very exact at one operation. 2 a

15. Required to find the value of the quantity (5 a) t or (y ) T .

Now this may be done two ways; either by finding the

power or | root of y at once ; or else by finding the 3d or

cubic root of A?, and then squaring the result.

By the first way:—Here it is easy to see that a is nearly
3

= 3, because 3 T =v/27 = 5 + some small fraction. Hence,

to find nearly the square root of 27, or V 27, the nearest

power to which is 25 = a z in this case :

Hence 3 n + a* = 3 x 27 + 25 = 106,

and n + 3a ! = 27 + 3 X 25 = 102 ;

5 x 53 265

then 102 : 106, or 51 : 53 : : 5 : -— —• — y/27 nearly,51 51

Then having n =
21 3 A 265

«-= -j, a-3, anda l =— nearly;

it will be |n +

and an + |

5 21 1i^T+T*
s

a* =
21

X — + ■

265 _ 6415
IT - 408 ’

265 _ 6371TT~ 408 ’

hence 6371 : 6415 :: 3: = 3y TyV = 3-020719, for the

value of the quantity sought nearly, by this way.

Again, by the other method, in finding first the value of
I

(y) T , or the cube root of y. It is evident that 2 is the
nearest integer root, being the cube root of 8 = a 3.

Hence 2 n + a 1 = y + S = y,

and N + 2« 3 = y 16 = y ; '
148 7 7

then 85 : 74 : : 2:or =—nearly. Then taking — fora,

, ,21, 343we have 2 n + a 3 = —-4—— =
2 64

1015

64~’

and n + 2a J =
2.343 1022

64 ’64
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hence 1022 1015, or 146 : 145
7 7 145

4 ; 4 X 146 = (V) T nearly.
2

Consequently the square of this, or (V) T will be =

sought more nearly, being true in the last figure.

A NEW METHOD OF FINDING, IN FINITE AND GENERAL

TERMS, NEAR VALUES OF THE ROOTS OF EQUATIONS OF

THIS FORM, X n — pX n~ x + qx"~ z — &C = 0 ; NAMELY,

HAVING THE TERMS. ALTERNATELY FLUS AND MINUS.

1. The following is. one method more, to be added to the

many we are already possessed of, for determining the roots

of the higher equations. By means of it we readily find a

root, which is sometimes accurate ; and when not so, it is at

least near the truth, and that by an easy finite formula, which

is general for all equations of the above form, and of the same

dimension, provided that root be a real one. This is of use

for depressing the equation down to lower dimensions, and

thence for finding all the roots, one after another, when the

formula gives the root sufficiently exact; and when not, it

serves as a ready means of obtaining a near value of a root,

by which to commence an approximation still nearer, by the

previously known methods of Newton, or Halley, or others.

This method is further useful in elucidating the nature of

equations, and certain properties of numbers; as will appear

in some of the following articles. We have already easy me¬

thods for finding the roots of simple and quadratic equations,

TRACT XI.
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I shall therefore begin with the cubic equation, and treat of

each order of equations separately, in ascending gradually

to the higher dimensions.

2. Let then the cubic equation „r 3 — px 1 + qx — r = 0 be

proposed. Assume the root x — a, either accurately or ap¬

proximately, as it may happen, so that x — a ~ 0, accu¬

rately or nearly. Raise this x — a — 0 to the third power,

the same dimension with the proposed equation,

so shall .r 3 — 3 ax 1 4- 3 a zx — a? = 0;

but the proposed equation is .r 3 — px 1 f~ qx — r =0;

therefore the one of these is equal to the other. But the

first term (a 3) of each is the same; and hence, if we assume

the second terms equal between themselves, it will follow

that the sum of the two remaining terms will also be equal,

and give a simple equation by which the value of x is deter¬

mined. Thus, Sax' 1 being : px 1, or a = ip, and

3a zx — « 3 = qx — r, we hence have

(fp) 3 —r p 3 —27r I

$P>

•Sar-q 3 x(ip) 2 -q p 1 -3q

the value of a, instead of it.

x — by substituting

3. Now this value of .r here found, will be the middle root

of the proposed cubic equation. For because a is assumed

nearly or accurately equal to x, and also equal to ip, there¬

fore x is = ip nearly or accurately, that is, i of the sum of

the three roots, to which the coefficient p, of the second term

of the equation, is always equal; and thus, being a medium

among the three roots, it will be either nearly or accurately

equal to the middle, root of the proposed equation, when that
root is a real one.

4. Now this value of x will always be the middle root ac¬

curately, whenever the three roots are in arithmetical pro¬

gression; otherwise, only approximately. For when the three

roots are in arithmetical progression, ^p or of their sum,

it is well known, is equal to the middle term or root. In the

other cases, therefore, the above-found value of x is only

near the middle root.
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5. When the roots are in arithmetical progression, because
2 _2T?’

the middle termor root is then =4®, and also =-X-—>
9 p-— 3 q

1 ®3 — 27?’

therefore fp = ~x —-—, or 2p 3 =9pq — 27?' = 9x (pq — 3?’),

an equation expressing the general relation of p, q, and r ;

where p is the sum of any three, terms in arithmetical pro¬

gression, q the sum of their three rectangles, and r the pro¬

duct of all the three. For, in any equation, the coefficient

p of the second term, is the sum of the roots ; the coefficient

q of the third term, is the sum of the rectangles of the roots ;

and the coefficient r of the fourth term, is the sum of the

solids of the roots, which in the case of the cubic equation is

only one:—Thus, if the roots, or arithmetical terms, be 1,2,3.

Here p — \ + 2 + 3 = 6, q — l x2+l x 3 + 2 x 3

= 2 + 3 + 6=11, r = 1 x 2 x 3=6; then 2 p 3 = 2
X 6 3 = 432, and 9 x (pq — 3 r) = 9 X 48 = 432 also.

6. To illustrate now the rule x = — x -— by some
9 p 1 — 3q J

examples ; let us in the first place take the equation .r 3 — 6x z
-tllx— 6 — 0. Here p = 6, </ = 11, and r=6 ; consequently

1 p 3 — 21)'_ 1 6 3 — 27 x 6 _ 8— 6_2

jf — 3q ~~9 X 6 2 — 3x11 “ 12'^Tl — T ~ 2 ‘

This being substituted for x in the given equation, makes all

the terms to vanish, and therefore it is an exact root, and the

roots will be in arithmetical progression. Dividing there¬

fore the given equation by x — 2 = 0, the quotient is

x 1 — 4x + 3 = 0, the roots of which quadratic equation

are 3 and 1, which are the other two roots of the proposed

equation x 3 — 6x z + ll.r — 6 = 0.

7. If the equation be x 3 — 39x z + 479.V — 1S81 = 0;

we shall have/? = 39, q = 479, and ?'=1881; then x — ~x

■p3 — 21 r 1 39 3 — 27x 1881 13 3 —188 1 3 16 79

p-- 3<7 ~9 X 39 2 — 3 x 479 = 13“ — 3 x 479~ 2tT = T~ 1 1t

T hen, substituting Ilf for x in the proposed equation, the
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negative terms are found to exceed the positive terms by 5,

thus showing that 1 If is very near, but something above, the

middle root, and that therefore the roots are not in arith¬

metical progression. It is therefore probable that 11 may be

the true value of the root, and on trial it is found to succeed.

Then dividing .r 3 — 39-r* -+ 479.r — 1881 by x — 11, the

quotient is x z — 28x -+ 171 =0, the roots of which quadra¬

tic equation are 9 and 19, the two other roots of the pro¬

posed equation.

8. If the equation be .r 3 — 6a' 1 -+ 9.r — 2 = 0 ;

Ave shall have p — 6, q — 9, and r — 2 ; then x =

1 _jo 3 —27r_ 1 6 3 — 27 x 2 _ 2 3 — 2 6

~9 X p z - 3 q ~~ T X 6 Z- 3x9 "" 12 -9 — T ~ 2 '

This value of x being substituted for it in the proposed equa¬

tion, causes all the terms to vanish, as it ought, thus showing

that 2 is the middle root, and that the roots are in arithmeti¬

cal progression. Accordingly, dividing the gi\ Ten quantity

x 3 — (ix z + 9x — 2 by x — 2, the quotient is x z — 4.r-+ 1 =0,

a quadratic equation, Avhose roots are 2 + ^/2 and 2— V2,

the two other roots of the equation proposed.

9. If the equation be x 3 — 5x z -+ 5x — 1 = 0 ;

Ave shall have = 5, q = 5, and r = 1 ; then x —

1 _ 5 3 —27 X 1 1 _ 125-27 1 98 49¥ X 5-~ 3x5 — ¥ X ' 25—15 — ¥ X It) “ 45 “ ^
From Avhich one might guess the root ought to be l,and

Avhich being tried, is found to succeed. But Avithout such

trial, we might make use of this value l-jf T , or l x’r nearly,

and approximate with it in the common way.

Having found the middle root to be 1, divide the given

quantity x 3 — 5x z -f 5x — 1 by x — 1, and the quotient is-

x 1 — 4x + 1=0, the roots of which are 2 -+ a/2, and

2— V2, the tAvo other roots, as in the last article.

10. If the equation be x 3 — lx z -+ IS.r — 18 = 0;

Ave shall have p =r 7, q = 18, and r = IS; then x —
1 7 3 —27 X 18 1 343-486 143

' T~— 3x18 9 X
. - = 3 5s? or 3 nearly.45 549-54
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Then trying 3 for x, it is found to succeed. And dividing

x l — 7a 2 + 13a’ — 18 by .r — 3, the quotient is x z — 4.r +6=0,

a quadratic equation whose roots are 2 + ^—2 and 2 — V — 2,

the two other roots of the proposed equation, which are both

impossible or imaginary.

11. If the equation be .r 3 — 6a’ 2 + I4.r — 12 — 0 ;

we shall havep = 6, q — 14, and r — 12 ; then x =
6 3 —27x 12

9 X 6 2 —

1 216 324 108 . . . .
—-=-=2. \V Inch being:

1x 14 9 36-42 54 b

substituted for x, it is found to answer, the sum of the terms

coming out = 0. Therefore the roots are in arithmetical

progression. And, accordingly, by dividing a’ 3 — 6.a 2 + 14.r

— 12 by x — 2, the quotient is x~ — 4.r + 6=0, the roots

of which quadratic equation are 2-1- +■— 2 and 2 — —2,

the two other roots of the proposed equation, and the com¬

mon difference of the three roots is s / — 2.

12. But if the equation be a' 3 — Sa” + 22a' — 24 = 0 ;

we shall have p = 8, q = 22, and r = 24 ; then x =

1 S 3 —27x 24 1 512- 648 13S_68_ ^

S 2 - 3 x 22 ~9 * 64 — 66 — HT ~ 17 ~ ‘

Which being substituted for a’ in the proposed equation, the

sum of the terms differs very widely from the truth, thereby

showing that the middle root of the equation is an imaginary

one, as it is indeed, the three roots being 4, and 2+ +" — 2,

and 2 ■— \/ — 2.

13. In Art. 2 the value of x was determined by assuming

the second terms of the two equations, equal to each other.

But a like near value might be determined by assuming cither

the two third terms, or the two fourth terms equal.

(a’ 3 — 3a.v 2 + 3 arx — a? — 0,

Thus the equations being | ^ _ p pl + qx _ r _ 0>

if we assume the third terms 3 a\v and qx equal, or a—^/^q^

the sums of the second and fourth terms will be equal, namely,

3 ux r + a 3 = px + r ; and hence we find

, « 3 -?- ,( \/~ (/Y — rx-J -— = V-———j
p — 3a p — -Vt?

by substituting \/-)q the value of a instead of it,
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And if we assume the fourth terms equal, namely a 3 — r,
or a — 3/r, then the sums of the second and third terms will
be equal, namely, 3 ax — 3a 2 = px — q ; and hence x “

either of these two formulas will give nearly the same value
of the root as the first formula, at least when the roots do not
differ very greatly from one another.

But if they differ very much among themselves, the first
formula will not be so accurate as these two others, because
that in them the roots were more complexly mixed together;
for the second formula is drawn from the coefficient of the
third term, which is the sum of all the rectangles of the roots;
and the third formula is drawn from the coefficient of the last
term, which is equal to the continual product of all the roots;
while the first formula is drawn from the coefficient of the
second term, which is simply the sum of the roots. And in¬
deed the last theorem is commonly the nearest of all. So
that when we suspect the roots to be very wide of each
other, it may be best to employ either the second or third
formula.

Thus, in the equation x 3 — 23x* -f 6 2x •— 40 = 0, whose
three roots are 1, 2, and 20. Here p = 23, q = 62, r = 40;
and by the

Where the two latter are much nearer the middle root (2)
than the first. And the mean between these two is 2^,
which is very near to that root. And this is commonly the
case; the one being nearly as much too great as the other is
too little.

2

--= ---—, by substituting rT instead of a. And
V — ‘3a a -i- J °r p — 3r r

1st til. x
1 23 3 — 27 x 40 1 12 1 67-1080

= 3| nearly,9 X 23 2 — 3x62 y X 529- 136

2d th. .r
94-40

23 - 12-S7 /5-34 nearly
2 62-35-1 12

— = T = If nearly.23 —3 x 40 3
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14. To proceed now, in like manner, to the biquadratic

equation, which is of this general form

x 4 — p.v 1 + qx z — rx + 5 = 0.

Assume the root x — a, or .r — a = 0, and raise this equa¬

tion x — a — 0 to the fourth power, or the same height with

the proposed equation, which will give

x 4 —4a.r 3 + 6a zx z — 4 a?x + a 4 = 0; but the proposed equa¬

tion is x 4 — px 3 + qx z — rx + 5 = 0; therefore these two

are equal to each other. Now if we assume the second terms

equal, namely 4 a = p, or a — i-p, then the sums of the three

remaining terms will also be equal, namely,

6 a zx z — 4 a 3x + a 4 = qx z — rx 4- 5 ; and hence

( 6a z — q) x z — (4a 3 -— r) x — s — «.4 , or

{if ~ q) — (tVP 3 “ r) x = 5 — T ++ 4 by substitut-

ing -\-p instead of a : then, resolving this quadratic equation,
we find its roots to be thus

x —
f 16 r ± + [(p 3 — 16)+— (jf— ig) X (p 4 — 2565)]

8 x ( fp z
or if we put A = {-p z

n = p 3

c = p 4
35 4

the two roots will be x

— 4 ?)

— 4 q,

— 16)’,

— 2565,
+ {t z — Ac)

8A

15. It is evident that the same property is to be understood

here, as for the cubic equation in Art. 3, namely, that the

two roots above found, are the middle roots of the four which

belong to the biquadratic equation, when those roots arc real

ones ; for otherwise the formulae are of no use. But how¬

ever those roots will not be accurate, when the sum of the

two middle roots, of the proposed equation, is equal to the

sum of the greatest and least roots, or when the four roots

arc in arithmetical progression ; because that, in this case,

-J-p, the assumed value of a, is neither of the middle roots

exactly, but only a mean between them.

16. To exemplify this formula x — ————|———-, let the8a

proposed equation be „r'*— 12+ + 49a’- —78.r4-40=0. Then
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A ~ip l — 4^=12 2 x- 3 — 4x49 = 216— 196= 20,

B = p 3 — 16/’ = 12 3 — 16 x 78= 1728— 1248= 480,

C= p 4 —256s=l2 4 —256 x 40 = 20736 —10240= 10496.

and 2, whose sum is 6. And trying 4 and 2, they are botli
found to answer, and therefore they* are the two middle
roots.

Then (.r — 4) x (.r — 2) = x 1 — 6.r + 8, by which divide
ing the given equation x* — l 2 jc 3 + 49+ 1 — 78x + 40 = 0,
tlie quotient is x' — 6.r +5=0, the roots of which quadra¬
tic equation are 5 and 1, and which therefore are the greatest
and least roots of the equation proposed.

17. If the equation be .r 4 — 12.r 3 + 47.r 2 — 72jt + 36 = 0; then
A = ip z ~ 4q — 12 2 x 3-—- 4x 47= 216— 188= 28,

B= p 3 — 16;-=12 3 — 16x72= 1728 — 1152= 576,
C= /) 4 — 256s —l c2 4 —256x 36=20736 — 9216 = 1 1520.

—-— = 3 and 2-f, or 3 and 2 nearly ; both of which an¬

swer on trial; and therefore 3 and 2 are the two middle roots.
Then (.r — 3)x (.r— 2) = x z — 5x + 6=0, by which divid¬

ing the given quantity r 4 — 12x 3 + 4 r7x z — 72X + 36 = 0, the
quotient is ,r 2 —7.r + 6 =0, the roots of which quadratic
equation are 6 and 1, which therefore are the greatest and
least roots of the equation proposed.

18. If the equation be x 4 — 7x s + 15.r 2 — i lx + 3 = 0 ; then

A = ip *— iq = Txi — 4x15= 73-'-— 60= J 3+,

B = p l — 16)’ = 7 3 — 16 X11 = 3 4 3 — 176 = 167,
C = /; 4 — 256j= 7-1 —256 x 3 =2401 —768 =1633.

_ b + vTb'-ac) _ 167+ V(167 ! - 13x 1633)
— 8a “ 8 x 13 v ~

= 2 j- and ^ nearly, or nearly 2 and 1 -, both which

15 + v/40
Hence x = —_ B+ v 4 (b 2 — Ac)_ 480+ V (480 2 —2 0 x 104 96) _

“ 8a ~ ~ 8x20 *"

= 3 + 1^ nearly, or 4£ and 1|. nearly, or nearly 4

Hence x = b + \/(b 2 -Ac) __ 576 + ■y/(576 2 — 28 x 1 1520)
8a 8x28

18+ 3

108

VOL. I. Q
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are found, on trial, to answer ; and therefore 2 and 1 are the

two middle roots sought.

Then (,r — 2) x (x — l) — x z — 3.r -f- 2, by which divid¬

ing the given equation x* — 7x 3 + 1 5x z — 1 + 3 = 0, the

quotient is x % — 4x + 1 = 0, the roots of which quadratic

equation are 2 + and 2 — */ 2 , and which therefore are

the greatest and least roots of the proposed equation.

19. But if the cqua. be .r 4 —9.r 3 + 30.r I —46.r +24=0; then
A = -#/>*— 4? = 9 ! xl- 4x30= 121i— 120= 1*,

B= p 3— 16r = 9 3 — 16 x 46 = 729 — 736 = -7,

t = p 4 —25G.S = 9 4 —256 x 24 = 6561 —6144=417.
b±v / (b 1 -Ac) -7 i y' (49 — 625-i) _

Hence .r =

-7± V - 516i
12 ’

Sa — 8 x 14

an imaginary quantity, showing that the

two middle foots are imaginary, and therefore the formula is

of no use in this case, the four roots being l,2 + v /— 2,

2 — V —2, and 4.

20. And thus in other examples the two middle roots will

be found when they are rational, or a near value when irra¬

tional, which in this case will serve for the foundation of a

nearer approximation, to be made in the usual way.

We might also find another formula for the biquadratic

equation, by assuming the last terms as equal to each other;

for then the sum of the 2d, 3d, and 4th terms of each would

be equal, and would form another quadratic equation, whose

roots would be nearly the two middle roots of the biquadratic

proposed.

21. Or a foot of the biquadratic equation may easily be

found, by assuming it equal to the product of two squares,

as (x — a) x x (x — b) x = x*— 2 (a+ b)x 3 + [2ab + (a + b) z'\x x —

%ab (a q- b) .y -f- a zb z = 0. For, comparing the terms of this

with the terms of the equation proposed, in this manner,

namely, making the second terms equal, then the third terms

equal, and lastly the sums of the fourth and fifth terms equal,

these equations will determine a near value of x by a simple

equation. For those equations are
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p = 2 (a -f- £), or = a + A,
gr = 2a6 + (a + b} 1 = 2ab or 2ab t= q — a/A,

^ = 2ab(a + b)x — a l b l = q-p (j — i-p'l )x —'i(? —
Then the values of and a + Z>, found from the first and
second of these equations, and substituted in the third,

s—(-If — iP 1)1 6‘4.t-(4 q-p'Y , c- . ,
b r-pbq-tf) 64r-Sp(4 ? -/) ) *
for one of the roots of the biquadratic equation .r 4 — jm? 3 +

qx 1 — rx + i=0;

22. To exemplify now this formula* let us take the same!
equation as in Art. 17, namely, x 4 — 12.r 3 + 47.T' —72;r +
36 = 0, the. roots of which were there found to be 1, 2, 3,
and 6. Then, by the last formula we shall have x ==

64s — (4q—p*) z 64 x 36 — (4 X 47— 12 1) 1 _64 x 36 — 44 x 44

64r -8/>(4y-/f j — 64 *72-96(4 X 47-12 2)~64 X 7^-^6 x 44
— or nearly 1, which is the least root.

23. Again, in the equation x 4 — 7.r*+ 15.P — 1 li ; --f 3 == 0,
Whose roots are 1, 2, 2 + ^/2, and 2— V2, we have x =

64x 3 — (60 — 49)* 64x 3 — 11 x 11 192-121
64X 11— 56(60-49) = 64x ll-56x 11~704-6L6 3=77 ~' ir
nearly* which is nearly a mean between the two least roots 1
and 2 — V2 or -§■nearly.

24. But if the eqdation be .r 4—9.r 3 + 30.r 2 — 46.r + 24 = 0,
which has impossible roots, the four foots being 1, 2 + y' — 2,

-2 — <y — 2, and 4 ; we shall have x =
64x24 — (i20-8l) 2 64x24-39x39 _ 1536-1521

64 x 46 - 72( 120 — 81) — 64 x 46 - 72 x 39 ~ 2944 - 2808 ~
ttV ~ i nearly, which is of no use in this case of imaginary
roots.

25. This formula will also sometimes fail when the roots are

all real. As if the equation be x 4— 12a’ 3 + 49jr2—78x + 40=0,-
the roots of which are 1, 2, 4, and 5. For here x ~

64x 40 —(196—144) 2 64x40-52x52 16x10^-13x13

64 X 78 — 96(196-144) = 64x 78-96 x 52~ 16X 19 a- 24x73.

160—169 —9 . . , . . „ .r=—;--=-, which Is ot no use, being infinite.
312 — 312 O ’ ■*
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26. For equations of higher dimensions, as the 5th, the 6th,

the 7th, &c, vve might, in imitation of this last method, com¬

bine other forms of quantities together. Thus, for the 5th

power, we might compare it either with (x — n) 4 x (.r — b),

or with (y — a) 3 x (.r — b)1 2 , or with (x — a) 3 x (x — b) x

(x — c), or with (.r— a) 2 x (.r— b) 2 X {x — c ). And so for

the other powers.

TRACT XII.

OF THE BINOMIAL THEOREM- WITH A DEMONSTRATION

OF THE TRUTH OF IT IN THE GENERAL CASE OF FRAC¬

TIONAL EXPONENTS.

1. It is well known that this celebrated theorem is called

binomial, because it contains a proposition of a quantity con¬

sisting of two terms, as a radix, to be expanded in a series of

equal value. It is also called emphatically the Newtonian

theorem, or Newton’s binomial theorem, because he has com¬

monly been reputed the author of it, as he was indeed for the

case of fractional exponents, which is the most general of

all, and includes all the other particular cases, of powers, or

divisions, &c.

2. The binomial, as proposed in its general form, was, by———— m

Newton, thus expressed p + pa n ; where p is the first term

of the binomial, a the quotient of the second term divided

by the first, and consequently pa is the second term itself;

or pa may represent all the terms of a multinomial, after the

first term, and consequently a the quotient of all those terms,

except the first term, divided by that first term, and may be

either positive or negative ; also — represents the exponent

of the binomial, and may denote any quantity, integral or
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fractional, positive or negative, rational or surd. When the
exponent is integral, the denominator n is equal to 1, and
the quantity then in this form (p -j- pq)’", denotes a binomial
to be raised to some power ; the series for which was fully
determined before Newton’s time, as will be shown in the
course of the 19th Tract of this volume. When the ex¬
ponent is fractional, m and n may be any quantities what¬
ever, m denoting the index of some power to which the
binomial is to be raised, and n the index of the root to be
extracted of that power: and to this case it was first extended
and applied by Newton. When the exponent is negative,
the reciprocal of the same quantity is meant; as

1

(p+pu) . is equal to «•
(p + pq)«

3. Now when the radical binomial is expanded in an equi¬
valent series, it is asserted that it will be in this general

ft ft. m-
form, namely (p + pq)" or f* x (1 + q)"~ =

— mm m—n in m—n m —2 n
p» x 1 + -Q + - . ~ . -aT . -^-a 3 + &c),

™ m m —n m —2// in —3 n

or P« X 1 + —AG + bq + ^ CQ \- —jy- DQ + &c.

where the law of the progression is visible, and the quanti¬
ties p, m , n, a, include their signs -|- or —, the terms of the
series being all positive when a is positive, and alternately
positive and negative when a is negative, independent how¬
ever of the effect of the coefficients made up of m and n :
also a, b, c, d, &c, in the latter form, denote each preceding
term. This latter form is the easier in practice, when we
want to collect the sum of the terms of a series; but the
former is the fitter for showing the law of the progression
of the terms.

4. The truth of this series was not demonstrated by-New¬
ton, but only inferred by way of induction. Since his time
however, several attempts have been made to demonstrate it,
with various success, and in various ways; of which however
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those are justly preferred, which proceed by pure algebra,

and without the help of fluxions. And such has been es¬

teemed the difficulty of proving the general case, independ¬

ent of the doctrine of fluxions, that many eminent mathe¬

maticians to this day account the demonstration not fully

accomplished, and still a thing greatly to be desired. Such

a demonstration I think is here effected. But before deliver¬

ing it, it may not be improper to premise somewhat of the

history of this theorem, its rise, progress, extension, and de¬
monstrations.

S. Till very lately the prevailing opinion has been, that

the theorem was not only invented by Newton, but first of

all by him ; that is, in that state of perfection in which the

terms of the series, for any assigned power whatever, can be

found independently of the terms of the preceding powers ;

namely, the second term from the first, the third term from

the second, the fourth term from the third, and so on, by a

general rule. Upon this point I have already given an opi¬

nion in the history to my logarithms, above cited, and I shall

here enlarge somewhat further on the same head.

That Newton invented it himself, I make no doubt. But

that he was not the first inventor, is at least as certain. It

was desoribed by Briggs, in his Trigonometria Britannica,

long before Newton was born; not indeed for fractional ex¬

ponents, for that was the application of Newton, but for any

integral power whatever, and that by the general law of the

terms as laid down by Newton, independent of the terms of

the powers preceding that which is required. For as to the

generation of the coefficients of the terms of one power from

those of the preceding powers, successively one after another,

it was remarked by Yieta, Qughtred, and many others, and

was not unknown to much more early writers on arithmetic

and algebra, as will be manifest hv a slight inspection of their

works, as well' as the gradual advance the property made,

both in extent and perspicuity, under the hands of the suc¬

cessive masters in arithmetic, every one adding somewhat

tnore towards the perfection of it.
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6. Now the knowledge of this property of the coefficients
of the terms in the powers of a binomial, is at least as old as
the practice of the extraction of roots; for this property was
both the foundation and the principle, as well as the means
of those extractions. And as the writers on arithmetic be¬
came acquainted with the nature of the coefficients in powers
still higher, just so much higher did they extend the extrac¬
tion of roots, still making use of this property. At first it
seems they were only acquainted with the nature of the square,
which consists of these three terms, 1, 2, 1 • and accord¬
ingly they extracted fhe square roots of numbers by means
of them ; but went np further. The nature of the cube next
presented itself, whi.ch consists of these four terms, 1, 3, 3, 1;
and by means of these they extracted the cubic roots of num¬
bers, ill the same manner as we do at present. And this was
the extent of their extractions in the time of L.ucas de Burgo,
an Italian, who, from 1470 to 1500, wrote several tracts on
arithmetic, containing the sum of what was then known of
this science, which chiefly consisted in the doctrine of the
proportions of numbers, the nature of figurate numbers,
and the extraction of roots, as far as the cubic root ilic!u r
(lively.

7. It was not long however before the nature of the co T
efficients of all the higher powers became known, and tallies
formed for constructing them indefinitely. For in the year
1544 came out, at Norimberg, an excellent treatise of arith T
metic and algebra, by Michael Stifelius, a German divine,
and an honest, but a weak, disciple of Luther. In this^work,
Arithmetica Integra, of Stifelius, are contained several curious
things, some of which have been ascribed to a much later
date. He here treats, pretty fully and ably, of progressional
and figurate numbers, and in particular of the following table
for constructing both them and the eoefficipnts of the terms
of all powers of a binomial, which has been so often used
since bis time for these and other purposes, and which more
than a century after \vas ? by Pascal, otherwise called ffia
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arithmetical triangle, but who only mentioned some addi¬
tional properties of the table.

1
2
3
4
5

6

7
S
9

10
11
12
13

14
13
16n

3
6
10 10
15 20
21 35 35

28 56 70
36 84 126 126
45 120 210 252
55 165 330 462
66 220 495 792
78 286 715 1287
91 364 1001 2002
105 455 1 3 n 5 3003
120 560 1820 4368
136 680 2380 6188

462
924
1716 1716
3003 3432
5005 6135 6435
8008 11440 12870
12376 19448 24310

Stifelius here observes that the horizontal lines of this table
furnish the coefficients of the terms of the correspondent
powers of a binomial; and teaches how to use them in ex¬
tracting the roots of all powers whatever. And after him the
same table was used for the same purpose, by Cardan, and
Stevin, and the other writers on arithmetic. I suspect how¬
ever, that the nature of this table was known much earlier
than the time of Stifelius, at least so far as regards the pro¬
gressions of ligurate numbers, a doctrine amply treated of
by Nichomachus, who lived, according to some, before Eu¬
clid, but not till long after him according to others. His
work on arithmetic was published at Paris in 1538 ; and it is
supposed was chiefly copied into the treatise on the same
subject by Boethius : but I have never seen either of these
two works. Though indeed Cardan seems to ascribe the in¬
vention of the table to Stifelius; but I suppose that is only
to be understood of its application to the extraction of roots.
See Cardan’s Opus Novum de Proportionibus, where he quotes
it, and extracts the table and its use from Stifelius’s book.
Cardan also, at p. 185, ct seq. of the same work, makes use
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of a like table to find the number of variations of things, or

conjugations as he calls them.

8. The contemplation of this table has probably been at¬
tended with the invention and extension of some of our most

curious discoveries in mathematics, both in regard to the

powers of a binomial, with the consequent extraction of

roots, the doctrine of angular sections by Vieta, and the dif¬

ferential method by Brings and others. For, one or two of

the powers or sections being once known, the table would be

of excellent use in discovering and constructing the rest.

And accordingly we find this table used on many occasions

by Stifclius, Cardan, Stevin, Vieta, Briggs, Oughtred, Mer¬

cator, Pascal, &c, &c.

9. On this occasion I cannot help mentioning the ample

manner in which I see St;felius, at fol. 35, et seq. of the same

book, treats of the nature and use of logarithms, though not

under the same name, but under the idea of a series of arith-

meticals, adapted to a series of geometricals. He there ex¬

plains all their uses; such as, that the addition of them, an¬

swers to the multiplication of their geometricals; subtraction

to division ; multiplication of exponents, to involution ; and

dividing of exponents, to evolution. And he exemplifies the

use of them in cases of the Rule-of-Three, and in finding

mean proportionals between given terms, and such like, ex¬

actly as is done in logarithms. So that he seems to have

been in the full possession of the idea of logarithms, and

wanted only the necessity of troublesome calculations to in¬
duce him to make a table of such numbers.

10. But though the nature and construction of this table,

namely of figurate numbers, was thus early known, and em¬

ployed in the raising of powers, and extracting of roots; yet

it was only by raising the numbers one from another bv con¬

tinual additions, and then taking them from the table for use

when wanted ; till Briggs first pointed out the way of raising

any horizontal line in the foregoing table by itself, without

any of the preceding lines; and thus teaching to raise the

terms of any power of a binomial, independent of any other
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powers; and so gave the substance of the binomial series in
words, wanting only the notation in symbols; as it is shown
at large in the 19th Tract, in this volume.

11. Whatever was known however of this matter, related
only to pure or integral powers, no one before Newton hav¬
ing thought of extracting roots by infinite series. He hap¬
pily discovered, that, by considering powers and roots in a
continued series, roots being as powers having fractional ex¬
ponents, the same binomial series would equally serve for
them all, whether the index should be fractional or integral,
or the series be finite or infinite,

12. The truth of this method however was long known
only by trial in particular cases, and by induction from ana¬
logy. Nor does it appear that even Newton himself ever
attempted any direct proof of it, But various demonstrations
of this theorem have been since given by the more modern
mathematicians, of which some are by means of the doctrine
of fluxions, and others, more legally, from the pure principles
of algebra only. Some of which I shall here give a short ac-
count of.

13. One of the first demonstraters of this theorem, was
Mr. James Bernoulli. Ilis demonstration is, among several
other curious things, contained in this little work called Ars
Conjectandi, which has been improperly omitted in the col¬
lection of his works published by his nephew Nicholas Ber¬
noulli. This is a strict demonstration of the binomial theorem
in the case of integral and affirmative powers, and is to this
effect. Supposing the theorem to be true in any one power,
as for instance, in the cube, it must be true in the next higher
power; which he demonstrates. But it is true in the cube,
in the fourth, fifth, sixth, and seventh powers, as will easily
appear by trial, that is by actually raising those powers by
continual multiplications. Therefore it is true in all higher
powers. All this he shows in a regular and legitimate man-
per, from the principles of multiplication, and without the
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help of fluxions. But lie could not extend his proof to the
other cases of the binomial theorem, in which the powers are
fractional. And this demonstration has been copied by Mr.
John Stewart, in his commentary on Newton’s quadrature of
curves. To which he has added, from the principles of
fluxions, a demonstration of the other case, for roots or frac¬
tional exponents,

14. In No. 230 of the Philosophical Transactions for the

year 1697, is given a theorem, by Mr. De Moivre, in imita¬

tion of the binomial theorem, which is extended to any num¬

ber of terms, and thence called the multinomial theorem ;

which is a general expression in a series, for raising any

multinomial quantity to any power. His demonstration of

the truth of this theorem, is independent of the truth of the

binomial theorem, and contains in it a demonstration of the

binomial theorem as a subordinate proposition, or particular

case of the other more general theorem. And this demon¬

stration may be considered as a legitimate one, for pure

powers, founded on the principles of multiplication, that is,

on the doctrine of combinations and permutations. And it

proves that the law of the continuation of the terms, must be

the same in the terms not computed, or not set down, as in
those that are written down.

15. The ingenious Mr. Landen has given an investigation

of the binomial theorem, in his Discourse concerning the Re¬

sidual Analysis, printed in 1758, and in the Residual Analysis

itself, printed in 1764. The investigation is deduced from

this lemma, namely, if m and n be any integers, and q X *

then is
m m

1 + q + q' + <73 - - (m)
■ — X ~ ~~ ■ --

X — V in ‘2m 3>«

J+7”+?" +q" - - (»)
which theorem is made the principal basis of his Residual
Analysis.
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The investigation is thus: the binomial proposed being
m

(1 + x)«, assume it equal to the following series l -|- ax +
bx 1 + cxi &c, with indeterminate coefficients. Then for the
same reason

in

as (1 + x)~ is = 1 + ax + bx'1 + cx 1 &c,
m

will (1 + y) n be = 1 + ay + + cy3 &c.
Then, by subtraction,

m m

(1 + x)« — (l +y)~ = a (.r— y) -f b {x 2 —y l ) + c (x 3 ~y s ) &c.
And, dividing both sides byur —y, and by the lemma, we

£L m. m

have ii±n^i±^ = ( 1 + ,r“ I x

1 + KB + <rrfo + ( rH )s - - - (m)

1 + <rt^ + (KmB-<»>
=a + b(x -\-y) + c (x- + xy -f y1) -\-d[x i -\- x zy + xy 1 +y l ) &c.
Then, as this equation must hold true whatever be the value
of y, take y — x, and it will become

fit

~ x (1 + x) « — a + 2 bx + 3 cx 1 + 4 cx 3 &c.

Consequently, multiplying by 1 + •*■, we have
m

—- x (1 + x ) tt 3 or i fcs equal by the assumption,

viz. + nl I m l •> . m , -s—ax - bx 2 q- cx 3 &c.n n n

, 2b) . 3c ) t , 4(1) , 8

= a] x + 2b\ x +3c$* &c>
Then, by comparing the homologous terms, the value of the
coefficients a, b, c, &c, are deduced for as many terms as are
compared.

A large account is also given of this investigation by the
learned Dr. Hales, in his Analysis Equationum, lately pub¬
lished at Dublin.

Mr. Landen then contrasts this investigation with that by
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the method of fluxions, which is as follows. Assume as
before;

m

(1 + x) n rr l -f- o-x + bx* + cx } + dx* &c.
Take the fluxion of each side, and we have

m ,n —
“ X (1 + ■*’)" x x — ax + 2 bxx + 3 cx zx &c.

Divide by x, or take it = 1, so shall
- —I

— x (1 + x) n =: a + 2 bx + 3 ex'1 + 4d.r 3 &c.

Then multiply by 1 -f- x, and so on as above in the other
way.

16. Besides the above, and an investigation by the cele¬
brated M. Euler, which are the principal demonstrations and
investigations that have been givenofthis important theorem, I
have been shown an ingenious attempt of Mr. Baron Maseres,
to demonstrate this theorem in the case of roots or fractional
exponents, by the help of De Moivre’s multinomial theorem.
But, not being quite satisfied with his own demonstration, as
not expressing the law of continuation of the terms which
are not actually set down, he was pleased to urge me to at¬
tempt a more complete and satisfactory demonstration of the
general case of roots, or fractional exponents. And he fur¬
ther proposed it in this form, namely, that if a be the coeffi¬
cient of one of the terms of the series which is equal to

_L
(1 -f- x)", and p the coefficient of the next preceding term,
and r the coefficient of the next following term ; then, if a

be = j x p, it is required to prove that r will be =

X a. This he observed would be quite perfect and satis¬
factory, as it would include all the terms of the series, as well
those that are omitted, as those that are actually set down.
And I was, in my demonstration, to suppose, if I pleased,
the truth of the binomial and multinomial theorems for in¬
tegral powers, as truths that had been previously and per¬
fectly proved.
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In consequence I sent him soon after the substance of tho
following demonstration ; with which he was quite satisfied*
and which I now proceed to explain at large.

17. Now the binomial integral is (1 + x)" —
a b c d

, ,71 7171— 1 7171— 1 M — 2 7171—l 71—2 71—3l+-x -i--.r* +- x* + — ---1^12^12 3 + 1 2 3 4 s

or 1 + ~.r-
n 71—X

-a.v'~ +
7i —2

bx 3 +
7i —3

■ex" + &-c i

where a, b, c, &c, denote the whole coefficients of the 2d*
3d, 4th, &c, terms, over which they are placed; and in
which the law is this, namely, if p, a, r, be the coefficients
of any three terms in succession, and if
JLp be = a, then is^zici “ r ; as is evident; and which*
h ’ A+l ’ ’

it is granted, has been proved.

18. And the binomial fractional is (1 + x) n —
a b c d

1 1 1
1 +-x-[ -—71 71 2 71

7i 1 1 — n 1
*•*+-■

„ 1 1&c, or 1 + —x-\-’ 71 2 71

71 2 71

71

—H <—
2 71 1 1

X 3 +—
-71 1 — 2 71 1 — 3?z

■ax 1- -f-

3 n
1 — 271

3 71
bx3

n 2 71
1-

3 n

3 71

x *

An

4 71

cx 4 -f &c ;

in which the law is this, namely, if p, a, r be the coefficients

of three terms in succession ; and if

yP be =: q, then is = R. Which is the property to be
proved.
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19. Again, the multinomial integral (1 +A^ + BA’*+cx 3&c)”j
is . i

n ti— 1 ?i — 2 7i — 3 . .
(a)

V)

7t
+ yAX

+ 71 71— 1
1 2 -AX

71

+ T b
n 7t—l 7i —2

+ -T'~‘— kx \
. 92 92—1

(0 +Y AB
w

+ T C

* 1 ' 2 ‘ 3 4 'AX

(«0

92 92—1 92 — 2

+ T—— As
t 71 71—1

+ T-— AO

, 92 92— 1
+ T— 8 ‘

71HI-=D1

71 71—1 71 — 2 92 — 3 92 — 4

T 1 2 3 4 5
71 92— 1 92 — 2 92—3

92 92— 1 92—2
+ . — AX

92 92— 1 92— 2
+ V—:--r— AB*1 2

92 92— 1

+ T .—AD

92 92—1
4-BC 1 1

71+ _ E

&C.

Or, if we put a, b, c, <f, &e, for the coefficients of the 2d, 3d,
4th, 5th, &c, terms, or powers of x, the last series, by sub¬
stitution, will be changed into this form,
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(1 + AX + B.T 2 + c.r 3 + &c)” =. - - - - - - 1

20. Now, to find the series in Art. 18, assume the proposed
binomial equal to a series with indeterminate coefficients, as

Then raise each side to the n power, so shall
1 + X — (1 + AX + B.J’ 1 + cx 3 + &c)".

But it is granted that the multinomial raised to any integral
power is proved, and known to be, as in the last Art. viz,

1 + x — (1 + A.r + bx~ + cx 3 + &c)“ =
a b c

7iA 2mb B(m-])act. 3mc h(2»— l)Rrt4-(M — 2)&b ,

1 + T* + — 8----3 -

It follows then, that if this last series be equal to 1 + x, by
equating the homologous coefficients, all the terms after the
second must vanish, or all the coefficients b, c, d, &c, after
the second term, must be each = 0. Writing therefore, in
this series, 0 for each of the letters b, c, d, &c, it will become
of this more simple form, viz, 1 + x =

a 6 = 0 c = 0

( a )

(]>)

3mc + (2m— 1)b«+ (m

2mb |-(n— 1 )a«!

( c )
3

4md + (3m, — I )ca -f (27! — 2)b!> + (n — 3)AC^ 4
4

(d) +

5me +(4m — 1) d a P (3m — 2 )c6 + (2m — 3) rc + (m — 4)

(1 + x)" = I + ax + b.t? + cx 3 + D.r 4 + &c.

r

I—

&C.

r-*—i

2mb + (m— 1) a a 3?c + (2?i— 1 )b a x 3 -f &c.2
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Put now each of the coefficients, after the second term, = 0,

and we shall have these equations
2«b + (In — 1) Aa = 0

3nc + (2 n — 1) b« = 0
4?2D -f- (3/2 — 1 ) ca =z 0

5/2E + (4n — 1) Da = 0
&c.

The resolution of which equations gives the following values
of the assumed indeterminate coefficients, namely,

1—n 1— 2 n 1— 3 n 1— 4 n ,B -- — Aa, C = -B0, D = - ca, E = -D a, &c :In ’ 3 n ’ in 5n ’ ’

which coefficients are according to the law proposed, namely,
when v is «, then is f—= R. a. e. d.

k 1 h-\-n

21. Also, by equating the second coefficients, namely,

1 — a = ?2A, we find a = —. This being written for a in

the above values of b, c, d, &c, will give the proper series

for the binomial in question, namely, (1 + ar)°
= 1 -f- AX -p B.r z + ex 3 + &c,

1— 2n,. I 1— n
= l + —x + - ax- +n 2« 3n ■bx 3 + &c,

, . 1 ,1 1— n , . 1 1—n 1—2 n ,= 1 d- X + — . -—X 1 d-. . —-— X 3 -f oCC.n n 2 n n 2 n 3n

Of the Form of the Assumed Series.

22. In the demonstrations or investigations of the truth of

the binomial theorem, the butt or object has always been the

law of the coefficients of the terms : the form of the series, as

to the powers of x, having never been disputed, but taken for

granted, either as incapable of receiving a demonstration, or

as too evident to need one. But since the demonstration of

the law of the coefficients has been accomplished, in which

the main, if not the only, difficulty was supposed to consist,

we have, extended our researches still further, and have even

doubted or queried the very form of the terms themselves,
VOL. i. R
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namely, 1 + at -|- bat* + c.r 3 D.r 4 + &c, increasing by

the regular integral series of the powers of x, as assumed to

in consequence of these scruples, I have been required, by a

learned friend, to vindicate the propriety of that assumption.

Which I think is effectually done as follows.

23. To prove then, that any root of the binomial 1 + x

can be represented by a series of this form 1 + x -f- x 1 + x%

+ .r 4 &c, where the coefficients are omitted, our attention

being now employed only on the powers of .r; Jet the seriesi

representing the value of (1 + .r)" be 1 |- A T B 4- c + n |-

<kc ; where A, B, c, &c, now represent the whole of the 2d,

3d, 4th, &c, terms, both their coefficients and the powers of

x, whatever they may be, only increasing from the less to the

greater, because they increase in the terms i + x of the given

binomial itself; and in which the first term must evidently

be 1, the same as in the given binomial.

Raise now (1 + x)", and its equivalent series 1 I A T B

+ c + &c, both to the n power, by the multinomial theorem,

and we shall have, as before,

Then equate the corresponding terms, and we have the first
term 1 = 1.

to the second term x of the binomial. For none of the other

terms of the series are equipollent, or contain the same power

&c ; for they are double, triple, quadruple, &c, in power to

A. Nor yet any of the terms containing b, c, d, &c; be-

denote the quantity (1 -f a)", or the n root of 1 + x. And

a 3 + &c1 +-TA +1 -j- X

11
—B

11 11— 1

1 ’ 1
AB

11

Again, the second term of the series yA, must be equal

of x, with the term —a. Not any of the terms a", a 3, a 4,
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cause, by the supposition, they contain all different and in¬

creasing powers. It follows therefore, that —A makes up

the whole value of the second term x of the given binomial.

Consequently the second term A of the assumed series, con¬

tains only the first power of x and the whole value of that

term a is = — x.n

But all the other equipollent terms of the expanded series

must be equal to nothing, which is the general value of the

terms, after the second, of the given quantity 1 + x or

1 + .r+ 0 + 0 + 0 + &c. Our business is therefore to

find the several orders of equipollent terms of the expanded

series. And these it is asserted will be as they are arranged

above, in which e is equipollent with A 1, c with a 3, d with a 4 ,
and so on.

Now that B is equipollent with A 4, is thus proved. The

value of the third term is 0. But —-— a 2 is a part of the

third term. And it is only a part of that term: otherwise

y---- would be = 0, which it is evident cannot happen in

every value of n, as it ought; for indeed it happens only

when n is = I. Some other quantity then must be equipol¬

lent with y • ——— a 1, and must be joined with it, to make up

the whole third term equal to 0. Now that supplemental

quantity can be no other than yB : for all the other follow¬

ing terms are evidently plupollent than b. It follows there¬

fore, that b is equipollent with a 2, and contains the second
72 72— 1 72

power of x ; or that y— — A+yB=0, and consequently
n— 1 l

— A+B = 0,OrB=-y 2n

Again, the fourth term must be == 0. But the quantities
n n—1 7i — 2 n «—1

----~—a 3 + -—ab are equipollent, and make

-n 1 —7i 1 1 — 7i
~a 2 = ——A.r --— x 1.

71 2 11

up part of that fourth term. They are equipollent, or A 3

equipollent with AB, because a 1 and E are equipollent. And
R 2
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they do not constitute the whole of that term; for if they
, , ,, n n — 1 n — 2 n 11 — 1 , .

did. then would--- a 3, d-.- ab be = Omall
’ 12 3 12

values of n, or -j—A 2 + b = 0 : but it has been just shown

above, that 1a 2 + b = 0 ; it would therefore follow that

would be
11 — 1

- , a circumstance which can only hap-o 2

pen when n = — 1, instead of taking place for every value

of 11. Some other quantity must therefore be joined with

these to make up the whole of the fourth term. And this

supplemental quantity can be no other than yC, because

all the other following quantities are evidently plupollent

than a 3 or ab. It follows therefore, that c is equipollent

"with a 3, and therefore contains the 3d power of x. And the
whole value of c is

1 —n 11 — 2 1—11 1 — 2n
~AB — -

1—2 n

- AB=_ £br B * :
1 1 - n 1 — 9.ii-x\

2 ' 3 “ ' 1 3 3 ii “ n c2n 3 n

And the process is the same for all the other following

terms. Thus then we have proved the law of the whole

series, both with respect to the coefficients of its terms, and

to the powers of the letter .r.

Since the above account was first written, almost 30 years

ago, other demonstrations have been given by several inge¬

nious and learned writers; which may be seen in some of tlie-

later volumes of the Philos. Trans, and elsewhere.
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TRACT XIII.
o *

ON THE COMMON SECTIONS OF THE SPHERE AND CONE.

WITH THE DEMONSTRATION OF SOME OTHER NEW PRO¬

PERTIES OF THE SPHERE, WHICH ARE SIMILAR TO CERTAIN

KNOWN PROPERTIES OF THE CIRCLE.

The study of the mathematical sciences is useful and pro¬

fitable, not only on account of the benefit derivable from them

to the affairs of mankind in general; but are most eminently

so, for the pleasure and delight which the human mind feels

in the discovery and contemplation of the endless number of

truths, that are continually presenting themselves to our view.

These meditations are of a sublimity far above all others,

whether the}' be purely intellectual, or whether they respect

the nature and properties of material objects; they methodize,

strengthen, and extend the reasoning faculties in the most

eminent degree, and so fit the mind the better for under¬

standing and improving every other science; but, above all,

they furnish us with the purest and most permanent delight,

from the contemplation of truths peculiarly certain and im¬

mutable, and from the beautiful analogy which reigns through

all the objects of similar inquiry. In the mathematical sciences,

the discovery, often accidental, of a plain and simple pro¬

perty, is but the harbinger of a thousand others of the most

sublime and beautiful nature, to which we are gradually led,

delighted, from the more simple, to the more compound and

general, till the mind becomes quite enraptured at the full

blaze of light bursting upon it from all directions.

Of these very pleasing subjects, the striking analogy that

prevails among the properties of geometrical figures, or

figured extension, is not one of the least. Here we often

find that a plain and obvious property' of one of the simplest
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figures, leads us to, and forms only a particular case of, a

property in some other figure, less simple ; afterwards this

again turns out to be no more than a particular case of an¬

other still more general ; and so on, till at last we often trace

the tendency to end in a general property of all figures
whatever.

The few properties which make a part of this paper, con¬

stitute a small specimen of the analogy, and even identity,

of some of the more remarkable properties of the circle, with

those of the sphere. To wdiich are added some properties

of the lines of section, and of contact, between the sphere

and cone. Both which may be further extended as occasions

may offer : like as all of these properties have occurred Irom

the circumstance, mentioned near the end of the paper, of

considering the inner surface of a hollow spherical vessel,

as viewed by an eye, or as illuminated by rays, from a given

point.

proposition 1.

All the tangents are equal, which arc drawn, from a given

point without a sphere, to the surface of the sphere, quite
around.

Demons. —For, let pt be any tangent

from the given point p ; and draw pc to

the centre c, and join tc. Also let cta

be a great circle of the sphere in the

plane of the triangle tpc. Then, cp

and ct, as well as the angle T, which is

right (Eucl. iii. 18), being Constant, in

every position of the tangent, or of the

point of contact T ; the square of pt will be every where

equal to the difference of the squares of the, constant lines

cp, ct, and therefore constant; and consequently the line or

tangent pt itself of a constant length, in every position, quite

round the surface of the sphere.

C A
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PROP. 2.

If a tangent be drawn to a sphere, and a radius be drawn

from the centre to the point of contact, it will be perpendi¬

cular to the tangent; and a perpendicular to the tangent will

pass through the centre.

Demons. —For, let pt be the tangent, tc the radius, and

cta a great circle of the sphere, in the plane of the triangle

tpc, as in the foregoing proposition. Then, pt touching

the circle in the point t, the radius'TC is perpendicular to

the tangent pt, by Eucl. iii. 13, 19.

prop. 3.

If any line or chord be drawn in a sphere, its extremes

terminating in the circumference; then a perpendicular drawn,

to it, from the centre, will bisect it: and if the line drawn

from the centre, bisect it, it is perpendicular to it.

Demons. —For, a plane may pass through the given line

and the centre of the sphere ; and the section of that plane

with the sphere, will be a great circle (Theodos. i. 1), of

which the given line will be a chord. Therefore (Eucl. iii. 3)

the perpendicular bisects the chord, and the bisecting line is

perpendicular.

Corol. —A line drawn from the centre of the sphere, to the

centre of any lesser circle, or circular section, is perpendi¬

cular to the plane of that circle. For, by the proposition, it

is perpendicular to all the diameters of that circle.

prop. 4.

If from a given point, a right line be drawn in any position

through a sphere, cutting its surface always in two points;

the rectangle contained under the whole line and the external

part, that is the rectangle contained by the two distances be¬

tween the given point, and the two points where the line

meets the surface of the sphere, will always he of tne same

constant magnitude, namely, equal to the square of the tan¬

gent drawn from the same given point.
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Demons .—Let p be the given point, and

Ab the two points in which the line pab

meets the surface of the sphere; through

PAB and the centre let a plane cut the

sphere in the great circle tab, to which

draw the tangent pt. Then the rectangle

pa . pb is equal to the square of pt (Eucl.

iii. 36); but pt, and consequently its

square, is constant by Prop. 1; therefore

pb, which is always equal to this square,

the same constant magnitude.

,r

Ti
A

the rectangle pa .
is every where of

prop. 5.

If any two lines intersect each other within asphere, and be

terminated at the surface on both sides; the rectangle of the

parts of the one line, will be equal to the rectangle of the

parts of the other. And, universally, the rectangles of the

two parts of all lines passing through the point of intersec¬

tion, are all of the same magnitude.

Demons .—Through any one-of the

lines, as ab, conceive a plane to be

drawn through the centre c of the

sphere, cutting the sphere in the great

circle abd ; and draw its diameter

dcpf through the points of intersection

p of all the lines. Then the rectangle AP . pb is equal to the

rectangle dp . pl (Eucl. iii. 35).

Again, through any other of the intersecting lines gi-i, and

the centre, conceive another plane to pass, cutting the sphere

in another great circle dgfh. Then, because the points c

and p are in this latter plane, the line cp, and consequently

the whole diameter dcpf, is in the same plane; and therefore

it is a diameter of the circle dgfh, of -which gpii is a chord.

Therefore, again, the rectangle gp . ph is equal to the rect¬

angle dp . pf (Eucl. iii. 35).

Consequently all the rectangles ap . pb, gp . ph, &c, are

equal, being each equal to the constant rectangle dp . pf,
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Corol .—The great circles passing through all the lines or

chords which intersect in the point p, will all intersect in the
common diameter dpf.

prop. 6.

If a sphere be placed within a cone, so as to touch it in two

points; then shall the outside of the sphere, and the inside

of the cone, mutually touch quite around, and the line of
contact will be a circle.

Demons. —Let v be the vertex of the

cone, c the centre of the sphere, t one of

the two points of contact, and tv a side

of the cone. Draw ct, cv. Then tvc

is a triangle right-angled at t (Prop. 2).

In like manner, t being another point of

contact, and ct being drawn, the triangle

fvc will be right-angled at t. These two

triangles then, tvc, tvc, having the two sides ct, tv, equal

to the two ct, tv (Prop. 1), and the included angle t equal

to the included angle f, will be equal in all respects (Luck

i. 4), and consequently have the angle tvc equal to the angle
tvc.

Again, let fall the perpendiculars tp, tv. Then the two

triangles tvp, tvv, having the two angles tvp and tpv equal

, to the two tv p and tpv, and the side tv equal to the side tv

(Prop. 1), will be equal in all respects (Euci. i. 26); conse¬

quently tp is equal to tp, and vp equal to vp. Hence pt, p t

are radii of a little circle of the sphere, whose^ plane is per-

pendicuhrr to the line cv, and its circumference every where

equidistant from the point c or v. This circle is therefore a

circular section both of the sphere and of the cone, and is
therefore the line of their mutual contact. Also cv is the axis

of the cone.

Corol. 1.—The axis of a cone, when produced, passes

through the centre of the inscribed sphere.

Corol. 2.—Hence also, every cone circumscribing a sphere,

so that their surfaces touch quite around, is a right cone;
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nor can any scalene or oblique cone touch a sphere in that
manner.

prop. 7.

The two common sections of the surfaces of a sphere and

a right cone, are the circumferences of circles, if the axis of

the cone pass through the centre of the sphere.

Demons. —Let v be the vertex of the

cone, c the centre of the sphere, and s

one point of the less or nearer section ;

draw the lines cs, cv. Then, in the tri¬

angle csv, the two sides cs, cv, and the

included angles cv, are constant, for all

positions of the side vs; and therefore

the side vs is of a constant length for all

positions, and is consequently the side of a right cone hav¬

ing a circular base ; therefore the locus of all the points s,

is the circumference of a circle perpendicular to the axiscv,

that is, the common section of the surfaces of the sphere and

cone, is that circumference.

In the same manner it is proved that, if A be any point in

the farther or greater section, and ca be drawn ; then va is

constant for all positions, and therefore, as before, is the side

of a cone cut off by a circular section whose plane is perpen¬
dicular to the axis.

And these circles, being both perpendicular to the axis,

are parallel to each other. Or, they are parallel because

they are both circular sections of the cone.

Corol, 1 . —Hence sa = sa, because va = va, and vs = Vr.

'Coral. 2.,-r— All the intercepted equal parts sa, sa, &c, are

equally distant from the centre. For, all the sides of the tri¬

angle sca are constant, and therefore the perpendicular cp is

constant also. And thus all the equal right lines or chords

in a sphere, are equally distant from the centre.

Corol. 3.—The sections are not circles, and therefore not

in planes, if the axis pass not. through the centre. For then
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some of the points of section are farther from the vertex than
others.

PRO.P. S.

Of the two common sections of a sphere and an oblique

cone, if the one be a circle, the other will be a circle also.

Demons. —Let sAas and as va be sec¬

tions of the sphere and cone, made by a

common plane passing through the axes

of the cone and the sphere; also ss, a a

the diameters of the two sections. Now,

by the supposition, one' of these, as a a,

is the diameter of a circle. But the angle

vs s = the angle vaa (Eucl. i. 13, and iii.

22), therefore s? cuts the cone in sub-contrary position to

A a ; and consequently, if a plane pass through s.?, and per¬

pendicular to the plane a va, its section with the oblique cone

will be a circle, whose diameter is the line ss (Apol. i. 5).

But the section of the same plane and the sphere, is also a

circle whose diameter is the same line sr (Theod. i. l). Con¬

sequently the circumference of the same circle, whose diame¬

ter is s s, is in the surface both of the cone and sphere ; and
therefore that circle is the common section of the cone and

sphere.

In like manner, if the one section be a circle whose dia¬

meter is s a, the other section will be a circle whose diameter

is SA.

Corol. 1 .—Hence, if the one section be not a circle, neither

of them is a circle; and consequently they are not in planes;

for the section of a sphere by a plane, is a circle.

Corol. 2. —When the sections of a sphere and oblique cone

are circles, the axis of the cone docs not pass through the

centre of the sphere, (except when one of the sections is a

great circle, or passes through the centre). For, the axis passes

through the centre of the base, but not perpendicularly;

whereas a line drawn from the centre of the sphere to the
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centre of the base, is perpendicular to the base, by cor. to

prop. 3.

Corol. 3.—Hence, if the inside of a bowl, which is a hemi¬

sphere, or any segment of the sphere, be viewed by an eye

not situated in the axis produced, which is perpendicular to

the section or brim ; the lower, or extreme part of the inter¬

nal surface which is visible, will be bounded by a circle of

the sphere ; and the part of the surface seen by the eye, will

be included between the said circle, and border or brim,

which it intersects in two points. For the eye is in the place

of the vertex of the cone; and the rays from the eye to the

brim of the bowl, and thence continued from the nearer part

of the brim, to the opposite internal surface, form the sides

of the cone; which, by the proposition, will form a circular

arc on the said internal surface; because the brim, which is

the one section, is a circle.

And lienee, the place of the eye being given, the quantity

of internal surface that can be seen, may be easily determined.

For the distance and height of the eye, with respect to the

brim, will give the greatest distance of the section below the

brim, together with its magnitude and inclination to the plane

of the brim ; which being known, common mensuration fur¬

nishes us with the measure of the surface included between

them. Thus, if ab be the dia¬

meter in the vertical plane pass¬

ing through the eye at E, also

afb the section of the howl by

the same plane, and aib the

supplement of that arc. Draw

eaf, eib, cutting this vertical

circle in f and i; and join if. Then shall if be the diame¬

ter of the section or extremity of the visible surface, and bf

its greatest distance below the brim, an arc which measures

an angle double the angle at a.

Corol. -1-. —Hence also, and from Proposition 4, it follows,

that if through every point in the circumference of a circle,

lines be drawn to a given point e out of the plane of the
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circle, so that the rectangle contained under the parts be¬

tween the point e and the circle, and between the same point

E and some other point r, may always be of a certain given

magnitude ; then the locus of all the points f will also be a

circle, cutting the former circle in the two points where the

lines drawn from the given point e, to the several points in

the circumference of the first circle, change from the convex
to the concave side of the circumference. And the constant

quantity, to which the rectangle of the parts is always equal,

is equal to the square of the line drawn from the given point

e to either of the said two points of intersection.—And thus

the loci of the extremes of all such lines, are circles.

prop. 9 .

Prob .—To place a given sphere, and a given oblique cone,

in such positions, that their mutual sections shall be circles.

Let v be the vertex, vb the least side,

and vd the greatest side of the cone. In

the plane of the triangle vbd it is evident

will be found the centre of the sphere.
Parallel to bd draw a a the diameter of a

circular section of the cone, so that it be

not greater than the diameter of the

sphere. Bisect ha with the perpendicu¬

lar ec ; with the centre a and radius of

the sphere, cut ec in c, which will be the centre of the

• sphere ; from which therefore describe a great circle of it,

cutting the sides of the cone in the points s, s, a, a: so shall

ss and a« be the diameters of circular sections which are com¬

mon to both the sphere and cone.

July 29 , 1785.
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TRACT XIV.

ON THE GEOMETRICAL DIVISION OF CIRCLES AND ELLIPSES

INTO ANY NUMBER OF PARTS, AND IN ANY PROPOSED

RATIOS.

ARTICLE 1.

In the year 1774 was published a pamphlet in 8vo, with

this title, A Dissertation on the Geometrical Analysis of the

Antients. With a Collection of Theorems and Problems, with¬

out Solutions , for the Exercise of Young Students. This

pamphlet was anonymous; it was however well known to

myself, and to several other persons, that the author ol it

was the late Mr. John Lawson, 15. D. rector of Swanscombe

in Kent, an ingenious and learned geometrician, and, what

is still more estimable, a most worthy and good man; one in

whose heart was found no guile, and whose pure integrity,

joined to the most amiable simplicity of manners, and sweet¬

ness of temper, gained him the affection and respect of all

who had the happiness to be acquainted with him. IIis

collection of problems in that pamphlet concluded with this

singular one, “ To divide a circle into any number of parts,

which shall be as well equal in area as in circumference.—

N. B. This may seem a paradox, however it may be effected in

a manner strictly geometrical .” The solution of this seem¬

ing paradox he reserved to himself, as far as I know ; but I

fell upon the discovery of it soon after; and my solution was

published in an account which I gave of the pamphlet in the

Critical Review for 1775, vol. xl, and which the author after¬

wards informed me was on the same principle as his own.

This account is in page 21 of that volume, and in the follow¬

ing words:
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2. “ We have no doubt but that our mathematical readers

will agree with us in allowing the truth of the author’s re¬

mark concerning the seeming paradox of this problem; be¬

cause there is no geometrical method of dividing the circum¬

ference of a circle into any proposed number of parts taken

at pleasure, and it does not readily appear that there can be

any other way of resolving the problem, than by drawing

radii to the points of equal division in the circumference.

However another method there is, and that strictly geome¬

trical, which is as follows.

“ Divide the diameter ab of the

given circle into as many equal parts
as the circle itself is to be divided

into, at the points c, d, e, &c. Then

on the lines ac, ad, ae, &c, as dia¬

meters, as also on be, ed, bc, &c,

describe semicircles, as in the annexed

figure : and they will divide the whole circle in the manner

as required.

“ For, the several diameters being in arithmetical progres¬

sion, of which the common difference is equal to the least of

them, and the diameters of circles being as their circum¬

ferences, these will also be. in arithmetical progression. But,

in such a progression, the sum of the extremes is equal to the

sum of each pair of terms equally distant from them ; there¬

fore the sum of the circumferences on ac and cb, is equal to

the sum of those on ad and db, and of those on ae and eb,

&c, and each sum equal to the semi-circumference of the

given circle on the diameter ab. Therefore all the parts

have equal perimeters ; and each is equal to the whole cir¬

cumference of the proposed circle. Which satisfies one of

the conditions in the problem.

“ Again, the same diameters being as the numbers 1, 2, 3,

4, &c, and the areas of circles being as the squares of their

diameters, the semicircles will be as the square numbers

1,4, 9, 16, &c, and consequently the differences between all

the adjacent semicircles are as the terms of the arithmetical
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progression 1,3, 5, 7, &c ; and here again the sums of the ex¬
tremes, and of every two equidistant means, make up the seve¬
ral equal parts of the circle. Which is the other condition.”

3. But this subject admits of a more geometrical form, and
is capable of being rendered very general and extensive, and
is moreover very fruitful in curious consequences. For first,
in whatever ratio the whole diameter is divided, whether into
equal or unequal parts, and whatever be the number of parts,
the perimeters of the spaces will al-

equal, and constant, by the same,
whatever be the ratio of the parts ad, dc, cb, of the diame¬
ter. We shall presently find too that the spaces tv, its, and
pq, will be universally as the same parts ad, dc, cb, of thediameter.

4. The semicircles having been described as before men¬
tioned, erect cf. perpendicular to ab, anti join be. Then
will the circle on the diameter be, be equal to the space pq.
For, join ae.
Now the space p = semicircle on ab —semicircle on ac;
but the semicir. on ab = semicir. on ae + semicir. on be,
and the semicir. on ac = semicir. on ae — semicir. on ce,
theref. semic. ab —semic. Ac = semic. be + semicir. ce,
that is, the space p is =:semic. be + semicir. ce ;
to each of these add the space ci, or the semicircle on bc,
then p -p a — semic. be + semic. ce + semic. bc,
that isp -p a = double the semic. be, or = the whole circle
on be.

5. In like manner, the two spaces pq and rs together, or
the whole space pqrs, is equal to the circle on the diameter
bf. And therefore the space rs alone, is equal to the differ¬
ence, or the circle on bf minus the circle on be.

ways be equal. For since the circum¬
ferences of circles are in the same
ratio as their diameters, and because
ab and ad + db and ac + cb are all

equal, therefore the semi-circumfer¬
ences c and b -f d and a + e are all

I)-C
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6. But, circles being as the squares of their diameters, BE 2,

bf 1, and these again being as the parts or lines bc, bd,

, therefore the spaces pq, pqrs, rs, tv,

are respectively as the lines bc, bd, cd, ad.

And if bc be equal to cd, then will pa he equal to rs, as in

the first or simplest case.
7. Hence, to find a circle equal to the space rs, where the

points d and c are taken at random : From either end of the
diameter, as a, take ag equal to dc, erect gh perpendicular
to ab, and join ah ; then the circle on ah will he equal to
the space rs. For, the space pq : the space rs : : bc : CD or

ag, that is as be 2 : ah 2 the squares of the diameters, or as the
circle on be to the circle on ah ; but the circle on be is equal
to the space pq, and therefore the circle on ah is equal to the
space rs.

8. Hence, to divide a circle in this manner, into any pro¬
posed number of parts, that shall be in any ratios to one an¬
other: Divide the diameter into as many parts, at the points

D, c, &c, and in the same ratios as those proposed ; then on
the several distances of these points, from the two ends a and

B, as diameters, describe the alternate semicircles on the dif¬
ferent sides of the whole diameter ab : and they will divide
the whole circle in the manner proposed. That is, the spaces

tv, rs, pq, will be as the lines ad, dc, cb.
9. But these properties are not confined to the circle alone.

They are found also in the ellipse, as the genus of which the
circle is only a species. For if the annexed figure be an
ellipse described on the axis ab,
the area of which is, in like
manner, divided by similar semi¬
ellipses, described on ad, ac,

bc, bd, as axes, all the semi¬
perimeters f, ae, bd, c, will he
equal to one another, for the
same reason as before in Art. 3,
namely, because the peripheries
of ellipses are as their diameters. And the same property

VOL. i. s
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ivonld still hold good, if ab were any other diameter of the
ellipse, instead of the axis ; describing on the parts of it semi¬
ellipses which shall be similar to those into which the diame¬
ter ab divides the given ellipse.

10. And further, if a circle be described about the ellipse,

on the diameter ab, and lines be drawn similar to those in the

second figure; then, by a process the very same as in Art. 4,
et seq. substituting only semiellipse for semicircle, it is found
that the space

pq is equal to the similar ellipse on the diameter be,
tqrs is equal to the similar ellipse on the diameter bf,
Rs is equal to the similar ellipse on the diameter ah,

or to the difference of the ellipses on bf and be ;
also the elliptic spaces - - - pq, pqrs, rs, tv,
are respectively as the lines - bc, bd, dc, ad,

the same ratio as the circular spaces. And hence an ellipse
is divided into any number of parts, in any assigned ratios,
in the same manner as the circle is divided, namely, dividing
the axis, or any diameter in the same manner, and on the parts-
of it describing similar semiellipses.

TRACT XV.

An approximate geometrical division of the circle,

The solution, here improved, of the following problem, I

first gave in my Miscellanea Mathematica, published in the

year 1775, pa. 311. The problem is as follows.
To find whether there is any such fixed

point e, in the radius bd produced, bi¬
secting the semicircle abc, so that any
line efg being drawn from it, this line
shall always cut the perpendicular radius
ad and the quadrantal arc ab, propor¬
tionally in the two points f and g; viz. so
that DF shall be to BG in a constant ratio.
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Solution .—Put the radius ad or db = r, de = ar, the arc
bg = g, gh = y, and df = i>. Now, if z to v be a constant

But, by similar triangles, eh = ar + */(i' 7'—y' 1) : gh = y : :

ed = ar : dp =--—-- = v ; the fluxion of which is
ar + ^{r'—y*)

i* ..K strray

ratio. Therefore there is no such fixed point e, as that men¬

tioned in the problem.

Corollary 1.—Hence then it appears, that the common
method of finding the side of a polygon inscribed in a circle,

by drawing a line from a certain fixed point e, through f and

g, making af to ac as 2 is to the number of sides of the poly¬

gon, is not generally true.

Corol. 2.—But such a point e maybe found, as shall render
that construction at least nearly true, in the following man-

ner. Suppose the line efg to revolve about e, from B to a:

at b, the arc bg and the line df arise in the ratio of be to

DE; and at a they are in the ratio of ba to ad or db ; there¬

fore make these two ratios equal to each other, and it will

determine the point e, so as that the ratios in all the inter¬

mediate points, or situations, will be nearly equal: thus then,

BE : DE : : BA : ad : : p : 2, making p = 3T416 ; or ed : DE

:: p — 2:2; hence de = x BD = T752 bd = t bd

very nearly. If, therefore, de be taken to da as 7 to 4; then

any line drawn from e, to cut the diameter ac, and the semi¬

circumference abc, it will very nearly cut them proportion**

ally. Therefore, if a polygon is to be inscribed, or if the

whole circumference is to be divided into any number of

equal parts j first divide the diameter into the same number
£ 2

ratio, then k to v will also be constant; and the contrary.

v ; putting — y‘) = oh ; aisu
10 (ar + 10)

Hence then k : v
V(r*-S-)

x = y x

r'-yarw
w(ar + w)* 1 : ar xx - g; which is evidently a variable(ar 4 - w)
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of parts, and through the 2d point of division draw efg, so

will ag be one of the equal parts very nearly.

Corol. 3 .—The number T752 being equal to \/ 3 nearly,

for V3 = T732; therefore, if de be taken to da as »/3 to

1, the point e will be found answering the same purpose as

before, but not quite so near as the former. And here, be¬

cause da : de :: 1 : a/3, therefore de is the perpendicular

of an equilateral triangle described on ac. Hence then, if

with the centres a, c, and radius ac, two arcs be described,

they will intersect in the point E, nearly the same as before.

And this is the method in common practice; but it is not so

near the truth as the construction in the 2d Corollary.

Corol. 4.—Hence also a right line is found equal to the arc

of a circle nearly : for bg is = y df nearly. And this is the

same as the ratio of 11 to 7, which Archimedes gave for the

ratio of the semicircumference to the diameter, or 22 to 7 the

ratio of the whole circumference to the diameter. But the

proportion is here rendered general for any arc of the circle,
as well as for the whole circumference.

TRACT XVI.

ON PLANE TRIGONOMETRY WITHOUT TABLES.

The cases of trigonometry are usually calculated by means

of tables of sines, tangents or secants, either of their natural

numbers, or their logarithms. But the calculations may also

be made without any such tables, to a tolerable degree of ac¬

curacy, by means of the theorems and rules contained in the

following propositions and corollaries.

PROPOSITION.

If 2 a denote a side of any triangle, a the number of degrees

contained in its opposite angle, and r the radius of the circle
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circumscribing the triangle: Then the value of A is equal to

57-2957795 x:-T
3 a 5

r+;
3.5a 7 3.5.7 a 9

r +; &c.
r ' 2.3r 3 ‘ 2.4.5r s 1 2.4.6.7?’ 7 ‘ 2.4.6.8.9/’ 9

For, since 2a is the chord of the arc on which the angle,

■whose measure is A, insists ; a will be the sine of half that arc,

or the sine of the angle to the radius r, since an angle in the

circumference of a circle is measured by half the arc on which

it stands; now it is well known that the said half arc 3 is

equal to
g? 3a? 3 »5aP

a + --4-1-———r &c ; and, 3T4159r denoting
T 2.3r* 2.4.5r* 2.4.6.7?’ 6 ’ ’ °

half the circumference of the same circle, or the arc of 180

degrees, it will be
1802 57-2957795z

as 3-14159r : 180° : : z : , „, ■ =-3-14159/’ r

n " 3 3a 5 3.5a 7 ,+ 7 &C)) the= 57*2957795 x(—+ - 3 . . . rr 2.3 r l -2.4.5r

degrees in the angle or half arc.

Corollary 1.—By reverting the above series, ve obtain
a

r

A

n 2.3k 3 "1’ 2.3.4.571 s 2.3.4.5.6.7/j 7
180

putting 7i = 5 (-2957795 =

& c ;

Corollary 2. —If 2a be the hypothenuse of a right-angled

triangle, a will be = r, and then the general series will be¬

come n x (a +_L —
2 A + 2.4.5

3.5 0 ^ ^ 90 90x 3 14159 &c
— &c) = 90, or — = --—=
n ‘ ’ K 1802.4.6.7

3.14159 &c 1 3 t 3.5 _ 2.5 7

2 ~ 1 + 243 + 2sJj + 24.6.7 2.4.6.8.9 &C ‘

Corol. 3.—Since the chord of 60 degrees is = the radius, or

the sine of 30 degrees = half the radius, putting a for J-r in the. . .... 11
general senes, will give n X (--|- p

C5

3 3.5
give n x (-4. —— j--4.-
& '2 ' 2.3.2 31 2.4.5.2 s ^ 2.4.6.7.2 7

,&c zz. 30; and hence the sum of the infinite series
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1
; + ; + ,

3.5

Ti &c >

is

2.3.2 3 2.4.5.2 s 2.4.6Z7.2 7

30 30x 3-14159 &c 3-14159 &c

n 180 6

■^th of the circumference of the circle whose diameter is 1.

Carol. 4.—It might easily be shown, from the principles of

common geometry, that the sine of 60 degrees is to the radius,

as a-v/ 3 is' to 1; substituting then \rV3 for a in the general
1 3 3.3 2 3.5.3 s

series, we shall have n */3 x (—+-2 ‘ 2.3.2 3 1 2.4.5.2 s + ’2.4.6.7.2 7

&c) = 60; and hence the sum of the infinite series
1 3 3 3 2 3.5.3 s

- + , +
2 ‘ 2.3.2 3 2.4.5.2 s 1 2.4.6.7.2 7

60 60 X 3"14159 &c 3'14159 &c

See, will be

, and is therefore to
JJv 7 3 180v/3 3v/3

the infinite series in the 3d corollary, as 2 is to y 7 3.

Coral. 5 .—If b, c be the halves of the other two sides of

the triangle, and b, c the degrees contained in their opposite
b H1 3 b s

' 2,4.5r s
angles; since b — n x (-1—— + ■ " -■ &c), and c =o . > ' v o c) A. /ir 5 7

2.3 r 2

c C

n X (— + 3 &c, and the 3 angles of any triangle are equalJ1 JitO r 5

to 180 degrees; we shall have 180r=A + B + c — n x

,a\b\-c a i +b 1+c 3• +
r ' 2.3 r 3

a-\-b c I « 3-fi 3+c 3

r ”*"2.3 5

&c), or the sum of the infinite series

' +
iz s + 6 s + c s 3.5 o'+ & + c”

2.4,5
+

2.4.6.7

„ , 180 180 x3-14159 &c
&c, will be =-=-——-- _= 3.14159 &c = then 180

circumference of a circle whose diameter is 1 ; a, b, c, being

the halves of the three sides of any triangle, and r the radius

of its circumscribing circle.

Coral. 6.—Since, bv theor. 3, b : a + c :: a — c : ——- =7 - o

half the difference of the segments of the base (b) made by a'
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perpendicular demitted from its opposite angle, and b -f-

aa — cc aa+bb — cc . . . , ., „

—-— =- j -= the segment adjoining to the side 2a, we

shall have ✓ («•- =

for the value of the said perpendicular to the base; and hence
2 abc«/(4 aW—(aa + bb — cc)*)

b ' '' C ‘ V (4 •a 1b l —\aa +bb — cc) 2)

the radius of the circumscribing circle,

Having now found the value of r, we can calculate all the

cases of trigonometry without any tables, and without re¬

ducing oblique triangles to right-angled ones; for, having

any three parts (except the three angles) given, we can find

the rest from these five equations following :
2 a be

r-.
s / (4a 2b z — (aa + bb—eef)'

n n'i 2a s

2 r 3 + 2A.br 3 + 2.4.6.7r

b 3 3b s 3.5b 7

2.A = W x(-+-

b

3.5a 7 3.5.1a’’

~7+ o a « sfd73 &c< )2.4.6.8.9r 9

3. B = nx 2 .3r 3+ 2A.5r i + 2 4 f 6?lr 7 + 2.4.6.&.9r 9 &C- ^
f3c ' c s 3c s 3.5c 7 3 5.1c 9

4 ‘ c -X (— + — -3 + —p s -+ -9&c.)

5. A -)- B + c = 180.

And, for the more convenience, we may add the three fol¬

lowing, which are derived from the 2d, 3d, and 4th, by rever?
sion of series.

6. a ~ r x (- -
v n

7. b = r x (— -\ )->

2.3 n 3
B 3

2 3n 3

+

+

8 - c = rj, br-s:« +
Where n =; 57‘2957795 &c.

A s A 7
&,c.)2.3.4.5/t 5 2.3.4'5.6.7« 7

B s B 7
&c.)2.3.4. on 3 2.3.4.5.6.7 a 7

c s c 7
&C-)2.3.4.5n 5

2.3.4.5.6.7 «’

EXAMPLE.

Suppose we take here the following example, in which are

given the two sides 2b = 345, 2c = 232, and the angle op-
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posite to 2c = 37° 20' = 37} degrees = c. Then since
c 374-x 3• 14159 &c , 232
— z= ----= ’651589587, we have c ~ —n 180 2
= 116 = r x ('651589587 — ’04610744 + ’00097879 —
•000009894 + ’000000058 &c) = r x (-652568435 —

•046117334) =’6064511?’. Hence r = —^--= 191-27677;’6064511

and b _ 345 x’6064511
r ~ 2x116

= ’9018346.

Again, b = 57'2957795 x 1 ’12402 (the sum of the series
in the 3d equation) = 64’4016 degrees = 64° 24'.

And a = 180 - 37}-64-4016 = 180 - 101’735 = 78°-265
= 78° 16' nearly.

T , A , . 78-265 ,Lastly, - being = = 1-365982, and r =

191-27677, from the 5th equation we have a = 191--27677 X
(1-365982 - -4247992 + -0396379 - ’0017607 + -0000288
- -0000005) = 191-27677 X ‘9790883 = 187-27684.
And hence 2a = 374-55368 =the third side of the triangle.

Carol. 7.—As the series by which an angle is found, often
converges very slowly, I have inserted the following approxi¬
mation of it; viz,

a.
A = n x (j-V(2- 2</(l

aa „
—•) ) ~ 3? ■) nearly; where the

letters denote the same quantities as in the above series. For
aa

since p = ^/(2- 2^(1-—) ) is = --hr——,v \ v tt' r 2.4?’ 3+
7 a 5

2.4.16?- 5 &c,

and — is = — +n r
a 3 3 a> „

2.3 r 3 ^ 2.4.5 54
we shall have, by taking the former of these from the latter,

a 3A

n p =

a

Jr

24 r
13 a 3
}ior

a 3 _ 7a 5
— 24?’ 3 + 384? ,s

- +- --- &c. But: from the first series,
3 640r s

- &c ; hence, by subtracting: the laU.s** 7 j o

ter from the former, it gives
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A
n

a a a
- P - |Pf— =— — 4p_|_ —J #')’ ')7. J 54H3/- 480r s- &c; and

a = » x (*p- |U=mx(V( 2-2^/(1_^) ) - nearly.

4 1

Coro/. 7—And again, since — x (p - ? — i? 3 = ^?4 5

&c ; where q is = by subtracting this from — --—=

1 7Z
&c, and reducing, there will be obtained a = y^X

(144p - 39q - iq l ) = ~ X (14 V 2 - 2 V (1 - ? »)) - 39q -

which will commonly give the angle exact to within a minute

of the truth. Where note, that the constant quantity is

= '54567409. And from the whole may be drawn the fol¬

lowing general problem.

PROBLEM.

To perform all the Cases of Trigonometry without any Tables .

Having any three parts of a triangle given, except the three

angles, the other three parts may be found, by some of the

following six general theorems.

1. a = \nx (V( 2 -V(-^) ) - -f) nearly. Or

A = 1^5 X ( 144v/ ( 2 _ VC 1 -^))- 39 -^-§p) more ^arly. i

a a? 3 a s 3.5a 7 3 5.7 a 9

2. A — nx (~+ 2>ar 3 + 2.4.5 p 5+ 2.4.6.7r 7 + 2.4.6.8.9?' 9 &C '^

3 ’ a VX( 'n 2.3m 3 + 2.3.4.5m s 2.3.4.5.6.7m 7
&c.)

4. r =

i +
2.3.M 3 2.3.4.5w s 2.3.4.5.6.7 m7

&c.
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2 abc
r =

aJ (a zb 2 — (a?+ b' — t*) 2)
2 abc

s/ [(« + Z>+c)x [a+b — c) x (a— b pc) x ( — a+5 + c)]'

C — VK + ^-2«V(l-( T - 2-^- ■&c)T2.3.4.5» s
Where a, b, c, are the halves of the three sides of the tri¬

angle, and A the number of degrees in the angle opposite the
side 2 a, and c the degrees in the angle opposite the side 2c;
also r is the radius of the circumscribed circle;

and n = ... ,180— = 57-2957795, or ~ = -54567409.
3-t4iS9 105

EXAMPLE.

Thus, if the three sides be given, as for example a = 13,
b = 14, c = 15. Then is r = 16^, and the angles by these
theorems come out as follow ; viz.

Angles by the Theor. The true Angles.
53° 7' - - angle a - - 53° 7’}
59 28 - - angle B - - 59 29|.
67 19 - - angle c - - 67 22}

179 54 sum of all 180 00

TRACT XVII,

ON MACHIN’S QUADRATURE OP THE CIRCLE.

Since the chief advantage of this method consists in taking

small arcs, whose tangents shall be numbers easy to manage,
Mr. Machin very properly considered, that as the tangent of
45° is 1 ; and that the tangent of any arc being given, the
tangent of double that arc can easily be found ; if there be
assumed some small simple number for the tangent of an arc,
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and then the tangent of the double arc be continually taken,

till a tangent be found nearly equal to 1, the tangent of 45%

by taking the tangent answering to the small difference be¬

tween 45° and this multiple, there would be obtained two very

small tangents, viz. the tangent first assumed, and the tangent

of the difference between 45° and the multiple arc; and that

therefore the lengths of the arcs corresponding to these two

tangents being calculated, and the arc belonging to the tan¬

gent first assumed being as often doubled as the multiple de¬

notes, the result increased or diminished by the other arc,

would be the arc of 45°, according as the multiple arc should
be below or above it.

Having thus thought of his method, by a few trials he was

lucky enough to find a number, and perhaps the only one,

proper for this purpose, viz, knowing that the tangent of a.

of 45° is nearly = -f, he assumed as the tangent of an arc :

then since, if t be the tangent of an arc, the tangent of the
9,t

double arc will be -—— the radius being L ; the tangent of

an arc double to that of which -j. is the tangent, will be
Z

■ -T —- = = r 5̂ , and the tangent of the double of this last1~~ tV
I o
TT 120

is --= — ; which, being very near equal to 1, shows
✓ 1 T4T 1

that the arc which is equal to 4 times the first, is very near
4'5°. Then, since the tangent of the difference between 45*

t — 1
and an arc whose tangent is t, is ——j, we shall have the tan¬
gent of the difference between 45° and the arc whose tangent

120 , -J4S-1 120-119 1
is-equal to — -= ■—-=-.119 1 44£+l 120+119 239

Now by calculating, from the general series, the arcs whose

tangents are i- and which may be quickly done, by rea¬

son of the smallness and the simplicity of the numbers, and

taking the latter arc from 4 times the former, the remainder

will be the arc of 45°. And this is Mr. Machin’s ingenious

quadrature of the circle.

But it was by means of Dr. Halley’s method that Mr.
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Macliin found the circumference of a circle, whose diameter
is 1, to be

3-14159265335,8079323846,2643383279,5028841971,6939937510,

5820974944,5923078164,0628620899,8628034825,3421170679 +,

true to above 100 places of figures.
Or, hy substituting the above numbers in Machin’s series,

re get the series (—16 4 JL ,16 _ 4_ J _.16 _J_& C
- "issT ~3~'^5 r_ 239"3 ) + [ 5 *~ 239 s&C ’

equal to the semicircumference whose radius is 1, or the
whole circumference whose diameter is 1. Being the series
published by-Mr. Jones, and which he acknowledges he re¬
ceived from Mr. Machin.

But because the arc whose tangent is -§., is = 2 times the
arc whose tangent is Tv, minus the arc to tangent -5-4-5.; (for

- -— = — z= tangent of twice the arc to tangent Tv 3 and
* -"tot hy
20_1

= T l T = tang, of diff. between the arcs whose tan-
■*

gents are ~ and f); therefore 8 times arc to tangent — 4
times arc to tang, yfj- — arc to tang. — arc of 45 °, or
whose tang, is l. "Which is much easier than Machin’s way.
And various other methods may easily be discovered from the
same principles.

TRACT XVIII.

A NEW AND GENERAL METHOD OF FINDING SIMPLE AND

QUICKLY-CONVERGING SERIES; BY WHICH THE PROPOR¬

TION OF THE DIAMETER OF A CIRCLE TO ITS CIRCUMFER¬

ENCE MAY EASILY BE COMPUTED TO A GREAT MANY PLACES

OF FIGURES.

In examining the methods of Mr. Machin and others, for
computing the proportion of the diameter of a circle to its
circumference, I discovered the method explained in this
paper. This method is very general, and discovers many
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series that are fit for the abovementioned purpose. The ad¬

vantage of this method is chiefly owing to the simplicity of

the series by which an arc is found from its tangent. For, if

t denote the tangent of an arc a, the radius being 1, then it

is well known, that the arc a is denoted by the infinite series,

t — + T^ s “ T-t 7 + ¥ 9 — &c •>where the form is as simple

as can be desired. And it is evident that nothing further is

required, than to contrive matters so, as that the value of the

quantity t, in this series, may be both a small and a very

simple number. Small, that the series may be made to con¬

verge sufficiently fast; and simple, that the several powers

of t may be raised by easy multiplications, or easy divisions.

Since the first discovery of the above series, many authors

have used it, and that after different methods, for determin-

ina: the length of the circumference to a great number of

figures. Among these were, Dr. Halley, Mr. Abra. Sharp,

Mr. Machin, and others, of our own country ; and M. de

Lagncy, M. Euler, &c, abroad. Dr. Halley used the arc of

30°, or x^th of the circumference, the tangent of which being

= by substituting ^/4- for t in the above series, and mul¬

tiplying by 6, the semicrcumference is =

Wr X C1 5 ^+ 7 ^i+ 7^4 - &c ) i which series is >

to be sure, very simple ; but its rate of converging is not

very great, on which account a great many terms must be

used to compute the circumference to many places of figures.

By this very series however, the industrious Mr. Sharp com¬

puted the circumference to 72 places of figures; Mr. Machin

extended it to 100; and M. de Lagney, still by the same series,

continued it to 128 places of figures. But though this series,

from the 12th part of the circumference, does not converge

very quickly, it is perhaps the best aliquot part of the cir¬

cumference which can be employed for this purpose; for

when smaller arcs, which are exact aliquot parts, are used,

their tangents, though smaller, are so much more complex,

as to render them, on the whole, more operose in the appli¬

cation : this will easily appear, by inspecting some instances
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that have been given in the introductions to logarithmic

tables. One of these methods is from the arc of 18°, the

tangent of which is V^l — 2 V }); another is from the arc of

22%, the tangent of which is \/2 — 1; and a third is from the

arc of 15°, the tangent of which is 2— V3. All of which are

evidently too complex to afford an easy application to the

general series.

In order to a still further impr'ovemcnt of the method by

the above general series, Mr. Machin, by a very singular and

excellent contrivance, has greatly reduced the labour natur¬

ally attending it. I have given an analysis of his method, or

a conjecture concerning the manner in which it is probable

Mr. Machin discovered it, in my Treatise on Mensuration ;

which, I believe, is the only book in which that method has

been investigated, as it is repeated in the foregoing Tract.

For though the series discovered by that method were pub¬

lished by Mr. Jones, in his “ Synopsis Palmariorum Ma-

theseos,” which was printed in the year 1706, he has given

them merely by themselves, without the least hint of the

manner in which they were obtained. The result shows, that

the proportion of the diameter to the circumference, is equal

to that of 1 to quadruple the sum of the two series,

T x (1 “ 3T* + 7~S~
JL X (i - - 1-
239 V 3.239 1

7,5® +

1

+ 5.239 4 "

1

9J S

1

&c) and

1

7.239® + 9.239* &C ^'

The slower of which series converges almost thrice as fast as

Dr. Halley’s, raised from the tangent of 30°. The latter of

these two series converges still a great deal quicker; but

then the large prime number 239, by the reciprocals of the

powers of which the series converges, occasions such long

and tedious divisions, as to counter-balance its quickness of

convergency; so that the former series is summed with ra¬

ther more ease than the latter, to the same number of places

of figures. Mr. Jones, in his “ Synopsis,” mentions other

series besides this, which he had received from Mr. Machin

for the same purpose, and drawn from the same principle.
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But we may conclude this to be the best of them all, as he

did not publish any other besides it.

M. Euler too, in his “ Introductio in Analysin Infinitorum,”

by-a contrivance something like Mr. Machin’s, discovers, that

■i and ^ are the tangents of two arcs, the sum of which is just

45°; and that therefore the diameter is to the circumference,

as 1 to quadruple the sum of the two following series,

2 * (1 “

x (1

1

Ta

i

3.9

1 1 1 „ . ,
-i- —- — -—; + —- &c) and
^ 5.4* 1A 3 T 9A* '

+ 5J* ~ T9 5 + 9^ &C) ‘

Both which series converge much faster than Dr. Halley’s,

and are yet at the same time made to converge by the powers

of numbers producing only short divisions; that is, divisions

performed in one line, or without writing down any thing'

besides the quotients.

I come now to explain my own method, which indeed bears

some little resemblance to the methods of Macliin and Euler;

but then it is more general, and discovers, as particular cases

of it, both the series of those gentlemen, and many others,

some of which are fitter for this purpose than theirs are.

This method then consists in finding out such small arcs,

as have for tangents some small and simple vulgar fractions,

the radius being denoted by I, and such also that some mul¬

tiple of those arcs shall differ from an arc of 45°, the tangent

of which is equal to the radius, by other small arcs, which also

shall have tangents denoted by other such small and simple

vulgar fractions. For it is evident, that if such a small arc

can be found, some multiple of which has such a proposed

difference, from an arc of 45°, then the lengths of these two

small arcs will be easily computed from the general series,

because of the smallness and simplicity of their tangents;

after which, if the proper multiple of the first arc be in¬

creased or diminished by the other arc, the result will be the

length of an arc of 45°, or |th of the circumference. And the

planner in which I discover such arcs is thus :

Let t, t, denote any two tangents, of which t is the
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greater, and t the less: then it is known, that the tangent ofT — t
the difference of the corresponding arcs is equal to

Hence, if t, the tangent of the smaller arc, be successively
denoted by each of the - simple fractions a, -J-, -j., A, &c, the'

general expression for the tangent of the difference between
the arcs will become respectively
2t — 1 3t — 1 4t— I 5t— 1 „ . . c ,
—-, —-;-,-, &c ; so that if t be ex-2 t-T ’ 3 + t ’ 4 + T ’ 5 + t’ ’

pounded by any given number, then these expressions will

give the tangent of the difference of the arcs in known num¬

bers, according to the values of t, severally assumed respect¬

ively. And if, in the first place, t be equal to 1, the tangent

of 45°, the foregoing expressions will give the tangent of an

arc, vdfich is equal to the difference between that of 45° and

the first arc ; or that of w'hich the tangent is one of the num¬

bers a, Jf, a, f, &c. Then, if the tangent of this difference,

just now found, be taken for t, the same expressions will give

the tangent of an arc, which is equal to the difference between

the arc of 45° and the double of the first arc. Again, if for
t we take the tangent of this last found difference, then the

foregoing expressions will give the tangent of an arc, equal

to the difference between that of 45° and the triple of the first

arc. And again taking this last found tangent for t, the same

theorem will produce the tangent of an arc equal to the dif¬

ference between that of 45° and the quadruple of the first

arc ; and so on, always taking for t the tangent last found,

the same expressions will give the tangent of the difference

between the arc of 45° and the next greater multiple of the

first arc ; or that of which the tangent was at first assumed

equal to one of the small numbers a, -J-, a, &c. This ope¬

ration, being continued till some of the expressions give such

a fit, small, and simple fraction as is required, is then at an

end, for we have then found two such small tangents as

were required, viz, the tangent last found, and the tangent
first assumed.

Here follow' the several operations adapted to the several
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values of t. The letters a, b, c, d, &c, denote the several

successive tangents.

1 . Take t z= a, then the theorem -g - - gives «=a, 0 = — J-.

Therefore the arc of 4$°, or Atj) of the circumference, is either

equal to the sum of the two arcs of which a and ■§-are the

tangents, or to the difference between the arc of which the

tangent is -f, and the double of the arc of which the tangent

is a ; that is, putting a = the arc of 45°, then

Or, a =

+

1

x (1
1 J_

3^4 + 5.4 2

1

(1 “ 3 ^ +

1
5J?

1

T4 3 '

1

1

9^ 4

1

7.9 3+ 9.9 4

1 -
1

y X (1 -

3.4

I

' +

F:

7.4 3

1

+
9.4 4

1

— &c.)

— &c.)

— &c,

— &c).
3.49 ' 5.49 2 7.49 3 9.49 4

The former of these values of a is the same with that before

mentioned, as given by M. Euler; but the latter is much

better, as the powers of ^ converge much faster than those
of a.

Corol .—From double the former of these values of a, sub¬

tracting the latter, the remainder is,

A =
¥ X(t-

1

1

3.9

1

+ 7 X ^ 3.49

\~

+

1

1

7.9 3

1

+ &c.)

+ &c.)S.49 2 7.49 3

which is a much better theorem than either of the former.

3t—* 1

2. If t be taken = then the expression -j-y gives

a — \,b ~ ij.. Here the value of a — \ gives the same ex¬

pression for the value of a as the first in the foregoing case,

and the value of b — gives the value of a the very same as

in the corollary to the case above.

3. Taking t = \, the expression --y gives a = 4 , b —

■Jj, c =1 d = — Where it is evident that the value
VOL. I. T
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of c — -j-V is the fittest number afforded by this case; and

hence it appears, that the arc of 45° is equal to the sum of the

arc of which the tangent is and the triple of the arc of

which the tangent is

Which is the best theorem that we have yet found, because

the number 99 resolves into the two easy factors 9 and 11.

that the last number, or the value of d, is the fittest of those

produced in this case; and from which it appears, that the

arc of 45° is equal to the difference between the arc of which

the tangent is and quadruple the arc of which the tan¬

gent is Or that

Which is the very theorem that was invented by Mr. Machin,
as we have before mentioned.

numbers it is evident that none are fit for our purpose.

Neither are any of these numbers fit for our purpose.

7.16 3
Or that A

5.99 4 7.99'

4. Let now t be taken = then the expression
2 7 9 1

a — qp, b = , c = ^j, d = — Where it is evident

3.239 : 5.239 4

5.5 4

1

1

+ &c.)

Of which1921’ 11767

5. Take now t ~ ■§.; then the expression -J—~ gives

7t 1
6. Again, take t — and the expression will gigive

7. In like manner take t — a, so shall ^—- giveB7 ° 8 + T °
1 , 47 297 1697 7847 14047

? — 9 ’ 6 ~ "79> C — 679? “ — 5729? e ~ 47529’“' — 388079'

14047
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S.

a —

f)T _1
And if t be taken = ^, the expression will give

4 _ 31 115 799 _ 2467
T ’ b ~ 49’ C ~ 236’ “ = 2239’ e ~ 10475’

10t—1

9. Also, if we take t = -fi 5) the expression ■■■■-•— will give
_ 9 . 79 671 5441 _ 41049 „
— 11 ’ b ~ U9» C ~ 1269’ ® — 13361’ e ~ 139051’

1 It*— 1

10. Further, if we take t = x '7 , the expression ——gives
_ 5 _ 49 _ 234 2159 9475
— 6' ’ b ~ 74’ C — 415 ’d ~ 4799’ e ~~ 27474’ ° CC‘

11. Lastly, if we take t — T'T , the expression gives
_ 11 . _ 113 41 419 4111
~ iA’ " — 167’ c ~ 73 ’ “ — 917’ e ~ 11423’ ‘* C •

Here it is evident, that none of these latter cases afford

any numbers that are lit for this purpose. And to try any

other fractions less than T'T for the value of t, does not seem

likely to answer any good purpose, especially as the divisors

after 12 become too large to be managed in the easy way of
short division in one line.

By the foregoing means it appears then, that we have dis¬

covered live different forms of the value of A, or ^th of the

semicircumference, all of which are very proper for readily

computing its length; viz, three forms in the first case and

its corollary, one in the 3d case, and one in the 4th case.

Of these, the first and last are the same as those invented by

Euler and Machin respectively, and the other three are quite

new, as far as I know.

But another remarkable excellence attending the first three

of the before mentioned series, is, that they are capable of

being changed into others which not only converge still

faster, but in which the converging quantity shall be TV, or

some multiple or sub-multiple of it, and so the powers of it

raised with the utmost ease. The series, or theorems, here
meant are these three:

T 2
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1st, A

2 dly, A

3dly, a =

+

X ^ 3.4 + 5.4 :
I 1

* C1 ~

O
Y x(l-

+ y x (1

3 9
1~3A
I

3.49
I

TF
1

+

+

+

, b

5.9 s
1

FF
i

i
FT 3

itT1

5.49 s
1

_5.9 S
1

7.4 3
1

7.49 3
J

' "T9 3
1

+ &c)

+ &C).

"f~ &c

+ & c )-

+ &c)

j + *W)-3.49 ' 5.49 s 7.49

Now if each of these be transformed, by means of the dif¬
ferential series, in cor. 3 p. 64 of the late Mr. Simpson’s
Mathematical Dissertations, they will become of these very
commodious forms, viz,

1st, A = ‘

2dly, A =

3 dly, A =

+

Jl
To
3

To
4
T x f 1 +
7

x (1 + -

X (1 +

3.10
2

8a 12S , . ,
+ -t- -tttt; + & c )

3.10

4

"FTo
4

50 * ( l + 3.100

r +

h

5.10
4a

5.10
8 a

7.10

+ T7^ + &c) -

12f

5.10 + T. 7 o + &c)

_6_
10 X (1 f 5.10

2

+

8a
5.100
4a

I-
12 £

7.100
6£

+ &c).

50 X ^ + 3.50

5.10

4a
+ TVK +

7.10
6£

+ &c)

+ &c).5.50 7.50

Where a, ?, y, &c, denote always the preceding terms in
each series.

Now it is evident that all these latter series are much easier
than the former ones, to which they respectively correspond;
for, because of the powers of 10 here concerned, we have
little more to do than to divide by the series of odd numbers
1, 3, 5, 7, 9, &c.

Of all these three forms, the 2d is the fittest for comput*
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ing the required proportion ; because, of the two series of
which it consists, the. several terms of the one are found from
the like terms of the other, by dividing these latter by 10,
and its several successive powers, 100,1000, &c ; that is, the
terms of the one consist of the same figures as the terms of
the other, only removed a certain number of places farther
towards the right hand, in the decuple scale of numbers;
and the number of places by which they must be removed,
is the same as the distance of each term from the first term
of the scries, viz, in the 2d term the figures must be moved
one place lower, in the 3d term two, in the 4th term three,
&c; so that the latter series will consist of but about half the
number of the terms of the former. Thus then this method
may be said to effect the business by one series only, in
which there is little more to do, than to divide by the several
numbers 1, 3, 5, 7, &c; for as to the multiplications by the
numbers in the numerators of the terms, after they become
large, they arc easily performed by barely multiplying by
the number 2, and subtracting one number from another: for
since every numerator is less by 2 than the double of its de¬
nominator, if d denote any denominator, exclusive always
of the powers of 10, then the coefficient of that term is
Qd— 2 2
■ d or 2 — , by which the preceding term is to be mul¬
tiplied ; to do which therefore, multiply it by 2, that is
double it, and divide that double by the divisor d, and sub¬
tract the quotient from the said double.
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TRACT XIX.

HISTORY OF TRIGONOMETRICAL TABLES, &C.

Necessity, the fruitful mother of most useful inventions;

gave birth to the various numeral tables employed in trigo¬
nometry, astronomy, navigation, &c. Astronomy has been
cultivated from the earliest ages. The progress ol that
science, requiring numerous arithmetical computations oi the
sides and angles of triangles, both plain and spherical, gave
rise to trigonometry; for those frequent calculations sug¬
gested the necessity of performing them by the property of
similar triangles; and for the read}' application of this pro¬
perty, it was necessary that certain lines described in and
about circles, to a determinate radius, should be computed,
and disposed in tables. Navigation, and the continually im¬
proving accuracy of astronomy, have also occasioned as con¬
tinual an increase in. the accuracy and extent of those tables.
And this, it is evident, must ever be the case, the improve¬
ment of trigonometry uniformly following the improvement
of those other useful sciences, for the sake of which it is more
especially cultivated.

The ancients performed their trigonometry by means of the
chords of arcs, which, with the chords of their supplemental
arcs, and the constant diameter, formed all species of right-
angled triangles. Beginning with the radius, and the arc
whose chord is equal to the radius, they divided them both
into 60 equal parts, and estimated all other arcs and chords
by those parts, namely all arcs by 6Qths of that arc, and all
chords by 60ths of its chord or of the radius. At least this
method is as old as the writings of Ptolemy, who Used the
sexagenary arithmetic for this division of chords and arcs,
and for astronomical purposes.—And this, by-thc-byc, may
be the reason why the whole circumference is divided
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into 360, or 6 times 60, equal parts or degrees, the whole
circumference being equal to 6 times the first are, whose
chord is equal to the radius : unless perhaps we are rather to
seek for the division of the circle in the number of days in
the year; for thus, the ancient year consisting of 360 days,
the sun or earth in each day described the 360th part of the
orbit; and thence might arise the method of dividing every
circle into 360 parts; and, radius being equal to the chord
of 60 of those parts, the sexagesimal division, both of the ra¬
dius and of the parts, might thence follow. Trigonometry
however must have been cultivated long before the time of
Ptolemy ; and indeed Theon, in his commentary on Ptolemy’s
Almagest, 1. i. ch 9, mentions a work of the philosopher Hip¬
parchus, written about a century and a half before Christ,
consisting of 12 books on the chords of circular arcs; which
must have been a treatise on trigonometry. And Menelaus
also, in the first century of Christ, wrote 6 books concerning
subtenses or chords of arcs. He used the word nadir , of an
arc, which he defined to be the right line subtending the
double of the arc; so that his nadir of an arc was the double
of our sine of the same arc, or the chord of the double arc ;
and therefore whatever he proves of the former, may be
applied to the latter, substituting the double sine for the
nadir.

The radius has since been decimally divided; but the sexa¬
gesimal divisions of the arc have continued in use to this day.
Indeed our countrymen Briggs and Gellibrand, having a
general dislike to all sexagesimal divisions, made an attempt
at some reformation of this custom, by dividing the degrees
of the arcs, in their tables, into centesmsor hundredth parts,
instead of minutes or 60th parts. The same was also re¬
commended by Vieta and others; and a decimal division of
the whole quadrant might perhaps soon have followed, had
it not been for the tables of Vlacq, which came out a little
after, to every 10 seconds, or 6th parts of minutes.—But the
complete reformation would be, to express all arcs by their
real lengths, namely in equal parts of the radius decimally
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divided: according to which method I have nearly completed
a table of sines and tangents.

It is not to be doubted that many of the ancients wrote on

the subject of trigonometry, being a necessary part of astro¬

nomy; though few of their labours on that branch have come

to our knowledge, and still fewer of the writings themselves
have been handed down to us.

We are in possession of the three hooks of Menelaus, on
spherical trigonometry; but the six books are lost which he
wrote upon chords, being probably a treatise on the construc¬
tion of trigonometrical tables.

The trigonometry of Menelaus was much improved by

Ptolemy (Claudius Ptolemaeus) the celebrated philosopher

and mathematician. He was born at Pelusium; taught as¬

tronomy at Alexandria in Egypt; and died in the year of

Christ 147, being the 78th year of his age. In the first book

of his Almagest, Ptolemy delivers a table of arcs and chords,
with the method of construction. This table contains 3 co¬

lumns; in the 1st are the arcs to every half degree or 30

minutes; in the 2d are their chords, expressed in degrees,

■minutes and seconds; of which degrees the radius contains

:60; and in the 3d column are the differences of the chords

answering to 1 minute of the arcs, or the 30th part of the
differences between the chords in the 2d column. In the

construction of this table, among other theorems, Ptolemy

show's, for the first time that wrn know of, this property of

any quadrilateral inscribed in a circle, namely, that the rect¬

angle under the two diagonals, is equal to the sum of the two

rectangles under the opposite sides.
This method of computation, by the chords, continued in

use till about the middle centuries after Christ; when it rvas
changed for that of the sines, ’which were about that time in¬
troduced into trigonometry by the Arabians, who in other
respects much improved this science, which they had received
from the Greeks, introducing, among other things, the three
or four theorems, or axioms, which we make use of at pre T
sent, as the foundation of our modern trigonometry.
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The other great improvements, that have been made in this

branch, are due to the Europeans. These improvements they

have gradually introduced since they received this science

from the Arabians. And though these latter people had long
used the Indian or decimal scale of arithmetic, it does not

appear that they varied from the Greek or sexagesimal divi¬

sion of the radius, by which the chords and sines had been

expressed.
This alteration, it is said, was first made by George Pur-

bach, who was so called from his being a native of a place of
that name, between Austria and Bavaria. He was born in
1423, and studied mathematics and astronomy at the univer¬
sity of Vienna, where he was afterwards professor of those
sciences, though but for a short time, the learned world
quickly suffering a great loss by lhs immature death, which
happened in 1462, at the age of 39 years only. Purbacb,
besides enriching trigonometry and astronomy with several
new tables, theorems, and observations, conceived the radius
to be divided into 600,000 equal parts, and computed the
sines of the arcs, for every 10 minutes, in such equal parts of
the radius, by the decimal notation.

This project of Purbacb was completed by his disciple,

companion, and successor, John Muller, or Regiomontanus,

being so called from the place of his nativity, the little town

of Mons Regius, or Koningsberg, in Franconia, where he was

bom in the year 1436. Regiomontanus not only extended

the sines to every minute, the radius being 600,000, as de¬

signed by Purbacb, but afterwards disliking that scheme as

evidently imperfect, he computed them also to the radius

1,000,000, for every minute of the quadrant. He also intro¬

duced the tangents into trigonometry, the canon of which he

called feecundus, because of the many and great advantages

arising from them. Besides these, he enriched trigonometry

with many theorems and precepts. Through the benefit of

all these improvements, except for the use of logarithms, the

trigonometry of Regiomontanus is but little inferior to that of

our own time. His treatise, on both plane and spherical tri-
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gonometiy, is in S books; it was written about the year 1464,
and was printed in folio at Nuremberg, in 1533. And in the
5th book are also various problems concerning rectilinear
triangles, some of which are resolved by means of algebra—
a prool that this science was not wholly unknown in Europe
before the treatise of Lucas de Burgo. Regiomontanus died
in 1476, at the age of 40 years only; being then at Rome,
whither he had been invited by the Pope, to assist in the re¬
formation of the calendar, and where it was suspected he
was poisoned by the sons of George Trebizonde, in revenge
for the death of their father, which was said to have been
caused by the grief he felt on account of the criticisms made
by Regiomontanus on his translation of Ptolemy’s Almagest.

Soon after .this, several other mathematicians contributed to
the improvement of trigonometry, by extending and enlarg¬
ing the tables, though few of their works have been printed;
and particularly John Werner of Nuremberg, who was born
in 1468, and died in 152S, and who it seems wrote five books
on triangles.

About the year 1500, Nicholas Copernicus, the celebrated
modern restorer of the true solar system, wrote a brief treatise
on trigonometry, both plane and spherical, with the descrip¬
tion and construction of the canon of chords, or their halves,
nearly in the manner of Ptolemy; to which is subjoined a
canon of sines, with their differences, for every 10 minutes of
the quadrant, to the radius 100,000. This tract is inserted
in the first book of his “ Revolutiones Orbium Coelestium,”
first printed in folio at Nuremberg, 1543. It is remarkable
that he does not call these lines sines , but semisses subtensarmn,
namely of the double arcs.—Copernicus was born at Thom
in 1473, and died in 1543.

In 1553 was published the “ Canon Foecundus,” or table of
tangents, of Erasmus Reinhold, professor of mathematics in
the academy of Wurtemburg. Ide was born at Salfieldt in
Upper Saxony, in the year 1511, and died in 1553.

To Francis Maurolyc, abbot of Messina in Sicily, we owe
the introduction of the “ Tabula Benelica,” or canon of se-
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cants, ivliicli came out about the same time, or a little before.
But Lansberg erroneously ascribes this to Rheticus. And
the tangents and secants are both ascribed to Reinhold, by
Briggs, in his “ Mathcmatica ab antiquis minus cognita,”
(p. 30, Appendix to Ward’s Lives of the Professors of Gre¬
sham College.)

Francis Vieta was born in 1540 at Fontenai, or Fontenai-
Je-Comte, in Lower Poitou, a province of France. He was
master of requests at Paris, where he died in 1603, being the
63d year of his age. Among other branches of learning in
which he excelled, he was one of the most respectable ma¬
thematicians of the 16th century, or indeed of any age. Flis
writings abound with marks of great originality, and the finest
genius, as well as intense application. Among them are se¬
veral pieces relating to trigonometry, which may be found
in the collection of his works published at Leyden in 1646,
by Francis Schooten, besides another large and separate vo¬
lume in folio, published in the author’s lifetime at Paris in
1579, containing trigonometrical tables, with their construc¬
tion and use; very elegantly printed, by the king’s mathe¬
matical printer, with beautiful types and rules; the differences
of the sines, tangents and secants, and some other parts,
being printed with red ink, for the better distinction ; but it
is inaccurately executed, as he himself testifies in page 323
of his other works above mentioned. The first part of this
curious volume is entitled “ Canon Mathematicus, scu ad
Triangula, cum Appendicibus,” and it contains a great va¬
riety of tables useful in trigonometry. The first of these is
what he more peculiarly calls “ Canon Mathematicus, seu ad
Triangula,” which contains all the sines, tangents, and secants
for every minute of the quadrant, to the radius 100,000, with
all their differences; and towards the end of the quadrant the
tangents and secants are extended to 8 or 9 places of figures.
They are arranged like our tables at present, increasing on
the left-hand side to 45 degrees, and then returning upwards
by the right hand side to 90 degrees; so that each number
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and its complement stand on the same line. But here the
canon of what we now call tangents is denominated fcecundus,
and that of the secants fcecundissimus, For the general idea
prevailing in the form of these tables, is, not that the lines
represented by the numbers are those which are drawn in and
about a circle, as sines, tangents, and secants, but the three
sides of right-angled triangles ; this beiug the way in which
those lines had always been considered, and which still con¬
tinued for some time longer. Hence it is that he considers
the canon as a series of plane right-angled triangles, one side
being constantly 100,000 ; or rather as three series of such
triangles, for he makes a distinct series for each of the three
varieties, namely, according as the hypotenuse, or the base,
or the perpendicular, is represented by the constant number
100,000, which is similar to the radius. Making each side
constantly 100,000, the other two sides are computed to every
magnitude of the acute angle at the base, from 1 minute up
to 90 degrees, or the whole quadrant. Each of the three
■series therefore consists of two parts, representing the two
variable sides of the triangle. "When the hypotenuse is made
the constant number 100,000, the two variable sides of the
triangle are the perpendicular and base, or our sine and co¬
sine; when the base is 100,000, the perpendicular and hypo¬
tenuse are the variable parts, forming the canon j'aecumlus et

fcecundissimus, or our tangent and secant; and when the
perpendicular is made the constant 100,000, the series con¬
tains the variable base and hypotenuse, or also canon fcecundus
et fcecundissimus,or our cotangent and cosecant. Of course,
therefore, the table consists of 6 columns, 2 for each of the
three series, besides the two columns on the right and left
for minutes, from 0 to 60 in each degree.

The second of these tables is similar to the first, but all in
rational numbers, consisting, like it, of three series of two
columns each ; the radius, or constant side of the triangle,
in each series, being 100,000, as before; and the other two
sides accurately expressed in integers and rational vulgar
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fractions. So that we have here the canon of accurate sines,
tangents, and secants, or a series of about 4300 rational right-
angled triangles. But then the several corresponding arcs of
the quadrant, or angles of those triangles, are not expressed.
Instead of them, are inserted, in the first column next the
margin, a series of numbers decreasing from the beginning
to the end of the quadrant, which are called numcn pnmi
baseos. It is from these numbers that Vieta constructs the

sides of the three series of right-angled triangles, one side in
each series being the constant number 100,000, as before.
The theorems by which these series of rational triangles are
computed from the numcri primi baseos, or marginal num¬
bers, are inserted all in one page at the end of this second
table, and in the modern notation they may be briefly ex¬
pressed thus : Let p denote the primary or marginal number
on any line, and r the constant radius or number 100,000 ;
then if r denote the hypotenuse of the right-angled triangle,
the perpendicular .and base, or the sine and cosine will'bc
respectively,

4/TTT and r ~ ’ V' vhicil lasfc ' vc Ilia >' reduce to —jr)-
When r denotes the base of the right-angled triangle, the
perpendicular and hypotenuse, or the tangent and secant,
are expressed by

f i , \ * i I -i +V2 + I «
anc * r + (which last we may reduce to ;

and when r denotes the perpendicular of the right-angled
triangle, the base and hypotenuse, or the cotangent and co¬
secant, are then expressed by

ipr (or -r), and Apr + (or — —r).
So that Vieta’s general values will be as we have here col¬
lected them together in the following expressions, imme¬
diately under the words sine, cosine, &c ; and just below
Vieta’s forms I have here placed the others, to which they
reduce and are equivalent, which are more contracted,
though not so -well adapted to the expeditious computation
as Vieta’s forms.
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Sine Cosine Tangent Secant Cotangent Cosecant

p' Sr P r <lr r r

ir=i iP 1, ~ T iP r +■ J
— t— r 1^—1 p ip--* 1 f-^-1 iP'+K.

ip* + l' ip “-1 P r
p '

All these expressions, it is evident, are rational ; and by as¬
suming p of different values, from the first theorems Vieta
computed the corresponding sides of the triangles, and so
expressed them all in integers and rational fractions.

To the foregoing principal tables are subjoined several
other smaller tables, or short specimens of large ones: as, a
table of the sines, tangents and secants, for every single de¬
gree of the quadrant, with the corresponding lengths of the
arcs, the radius being 100,000,000; another table of the sines,
tangents, and secants, for each degree also, expressed in sexa¬
gesimal parts of the radius, as far as the third order of part-;
also two other tables for the multiplication and reduction of
sexagesimal quantities.

The second part of this volume is entitled “ Univcrsalium
Inspectionum ad Canonem Mathematicum Liber singuiaris.”
It contains the construction of the tables, a compendious
treatise on plane and spherical trigonometry, with the appli¬
cation of them to a great variety of curious subjects in geo-
metry and mensuration, treated in a very learned manner;
as also many curious observations concerning the quadrature
of the circle, the duplication of the cube, &c. Computations
are here given of the ratio of the diameter of a circle to the
circumference, and of the length of the sine of 1 minute, both
to many places of figures ; by which he found that the sine
of 1 minute is between 2,908,881,959 and 2,908,882,056;
also, the diameter of a circle being 1000 &c, that the peri¬
meter of the inscribed and circumscribed polygon of 393,216
sides, will be as follows:

perimeter of the inscrib. polygon 314,159,265,35,
perimeter of the circum. polygon 314,159,265,37,

and that therefore the circumference of the circle lies be¬
tween those two numbers,
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Though no author's name appears to the volume we have
been describing, there can be no doubt of its being the per¬
formance of Vieta; for, besides bearing evident marks of his
masterly hand, it is mentioned by himself in several parts of
bis other works collected by Schooten, and in the preface to
those works by Elzevir, tin; printer of them ; as also in Mon-
tucla’s “ Histoire des Mathematiques which.are the only
notices I have ever seen or heard of concerning this book, the
copies of which are so rare, that I never saw one besides that
which is in my own possession.

In the other works of Vieta, published at Leyden in 164b,
by Schooten, as mentioned above, there are several other
pieces of trigonometry; some of which, on account of their
originality and importance, are very deserving of particular
notice in this place. And first, the very excellent theorems,
here first of all given by our author, relating to angular sec¬
tions, the geometrical demonstrations of which are supplied
by that ingenious geometrician, Alexander Anderson, then
professor of mathematics at Paris, but a native of Aberdeen,
and cousin-german to Mr. David Anderson, of Finzaugh,
whose daughter was the mother of the celebrated Mr. Janies
Gregory, inventor of the Gregorian telescope. We find here,
theorems for the chords, and consequently sines, of the sums
and differences of arcs ; and for the chords of arcs that are in
arithmetical progression, namely', that the 1st or least chord
is to the 2d, as any one after the 1st is to the sum of the two
next less and greater: for example, as the 2d to the sum of
the 1st and 3d, and as the 3d to the sum of the 2d and 4th,
and as the 4th to the sum of the 3d and 5th, &c ; so that the
1st and 2d being given, all the rest are found from them by
one subtraction, and one proportion for each, in which the
1st and 2d terms are constantly the same. Next are given
theorems for the chords of any multiples of a given arc or
angle, as also the chords of their supplements to a semicircle,
which are similar to the sines and cosines of the multiples of
given angles; and the conclusions from them are expressed
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in this manner : 1st, that if c be the chord of the supplement
of a given arc a, to the radius 1; then the chords of the sup¬
plements of the multiple arcs will be as in the annexed table:
where the author observes, that
the signs are alternately + and
— ; that the vertical columns of
numeral coefficients to the terms
of the chords, are the several
orders of figurate numbers, which
he calls triangular, pyramidal,
triangulo-triangular, triangnlo-
pyramidal, &c, generated in the

ordinary way by continual addi¬

tions ; not indeed from unity, as
IN' THE GENERATION OF POWERS,

but beginning with the number 2; and that the powers ob¬
serve always the same progression: secondly, that if the
chord of an arc a. be called 1, and d the chord oi the double
arc 2a, then the chords of the
series of multiple arcs will be
as in this table ; where the au¬
thor remarks as before on the
law of the powers, signs, and
coefficients, these being the
orders of figurate numbers,
raised from unity by continual
additions, after the manner of

the genesis of powers, which
generation in that way he
speaks of as a thing generally
known, but without giving any
bint how the coefficients of the terms of any power may be
found from one another only, and independent of those of
any other power, as it was afterwards, and first of all, I be¬
lieve, done by Henry Briggs, about the year 1600: and
3dly, that if c be the chord of any arc a , to the radius 1,

Arcs Chords,

1 a i
2 a d

3 a d’-\

4 a d 3 — 2d

5a d*—id z + 1

6 a d s — 4d 3+ 'id

7 a- d 6 — 5d A-\- dd z — 1

S a d 7 -6d 5 + lQcP-'td
&c. &c.

Arcs Chords of the Sup.

la C

2 a c 2 — 2

3a c 3 — 3 c

4 a c 4 -4c*+2

na c 5 — 5c 3 +5c

6 a c 6 -6c 4 + 9c--2
7 a c 1 — 7c s -j- 14c 3 — 7c

Sc c. & c.
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then the series of the chords and supplemental chords of the

multiple arcs will be thus ; where the values are alternately

Arcs Chords and Chords of Sup.

la Chord = -f- c
2 a Sup. ch. = — c 2 + 2
3 a Chord = — c 3 + 3c
4 a Sup. ch. = -(- c 4 — 4c 1 -f- 2
5a Chord = + c s — 5c 3 + 5c
6 a Sup. ch. = — c 6 + 6c 4 — 9c2 + 2
7 a Chord = — c 7 + 7c s — 14c 3 + 7c
&c. &c.

chords, and chords of the supplements of the arcs on the

same line, and the law of the powers and coefficients as be¬

fore, but every alternate couplet of lines having their signs

changed.

Another curious theorem is added to the above, for finding

the sum of all these chords drawn in a semicircle, from one

end of the diameter to every point in the circumference,

those points dividing the circumference into any number of

equal parts ; namely, as the least chord is to the diameter, so

is the sum of the said least chord and diameter and greatest

chord, to double the sum of all the chords, including the
diameter as one of them.

As the above theorems are chiefly adapted for the chords

of multiple angles, a few problems and remarks are then

added (whether by Vieta or Anderson does not clearly ap¬

pear, but I think by the latter) concerning the application of

them, to the section of angles into submultiples, and thence

to the computation of the chords or sines, or a canon of tri¬

angles. The general precept for the angular sections is this:

select one of the above equations adapted to the proper num¬

ber of the section, in which will be concerned the powers of

the unknown or required quantity, as high as the index of

the section; and from this equation find that quantity by the

known methods for the resolution of equations. Examples
VOL. i. u
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are given of three different sections, namely, for 3, 5, and

7 equal parts, the forms of which are respectively these,

3c — c 3 . . . . = g

5c — 5 c 3 + c s . . — g

7c — 14c 3 + c 5 — c 7 ~ g

where g is the chord of the given arc or angle, and c the re¬

quired chord of the 3d, 5th, or 7th part of it. And it is

shown, geometrically, that the first of these equations has 2

real positive roots, the second 3, and the last 4; also, from

the same principles, the relations of these roots are pointed
out.

The method then annexed for constructing the canon of

sines, from the foregoing theorems is thus : By dividing the

radius in extreme-and-mean ratio, is obtained the sine of 18

degrees; this quinquisectcd, gives the sine of 3° 36'. Again,

by trisecting the arc of 60°, there is obtained the sine of 20°;

this again trisected gives that of 6° 40'; and this bisected gives

that of 3° 20': Then, by the theorem for the difference of two

arcs, there will be found the sine of 16', the difference be¬

tween 3° 36' and 3° 20': Lastly, by four successive bisections,

will at length be found the sines of S', 4', 2', and l'. This

last being found, the sines of its multiples, and again of the

multiples of these multiples, &e, throughout the quadrant,

are to be taken by the proper theorems before laid down.—

And the same subject is still further pursued and explained,

in the tract containing the answer given by Vieta, to the

problem proposed to the whole world by Adrianus Romanus.

In the same collection of Vieta’s works, from page 400 to 432,

is given a complete treatise on practical trigonometry, con¬

taining rules for resolving all the cases of plane and spherical

triangles, by the Canon Mathcmaticus, or table of sines, tan¬

gents and secants.

The next authors whose labours in this way have been

printed, are Rheticus, Otho, and Pitiscus : to all of whom we

owe very great improvements in trigonometry.-—.George

Joachim Rheticus, professor of mathematics in the univer¬

sity of Wittemberg, and sometime pupil to Copernicus, died
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in 1576, in the 60tli year of his age. He conceived, and
executed, the great design of computing the triangular
canon for every 10 seconds of the quadrant, to the radius
1000000000000000, consisting of 1, followed by 15 ciphers.
The series of sines which Rheticus computed to this radius,
for every 10 seconds, and for every single second in the first
and last degree of the quadrant, was published in folio atFranc-
fort, 1613, by Pitiscus, who himself added a few of the first
sines computed to the radius 10000000000000000000000.

But the large work, or whole trigonometrical canon com¬
puted by Rheticus, was published in 1596 by Valentine Otho,
mathematician to the Electoral Prince Palatine. This vast
work contains all the three series for the whole canon of
right-angled triangles (being similar to the sines, tangents
and secants, by which names I shall call them), with all the
differences of the numbers, to the radius 10000000000.

Prefixed to these tables, are several books on their con¬
struction and use, in plane and spherical trigonometry, &c.
Of these, the first three are by Rheticus himself; namely,
book the 1st, containing the demonstrations of 9 lemmas,
concerning the properties of certain lines drawn in and about
circles: the 2d book contains 10 propositions, relating to the
sines and cosines of arcs, together with those of their sums
and differences, their halves and doubles, &c. The 3d book
teaches, in 13 propositions, the construction of the canon to
the radius 1000000000000000. By some of the common pro¬
perties of geometry, having determined the sines of a few
principal arcs, as 30°, 36°, &c, in the first proposition, by
continual bisections, he finds the sines of various other arcs,
down to 45 minutes.- Then, in the 2d proposition, by the
theorems for the sums and differences of arcs, he finds all the
sines and cosines, up to 90 degrees, in a series of arcs differ¬
ing by 1° 30'. And, in the 3d proposition, by the continual
addition of 45', he obtains all the sines and cosines in the series
whose common difference is 45'. In the 4th proposition, be¬
ginning with 45', and continually bisecting, he finds the sines
and cosines of the series of half arcs, till he arrives at the arc

U 2
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of 14 viii 19'*, the sine of which is found to be 1, and its
cosine 939999999999999. In the 5th proposition are com¬
puted the sine and cosine of 30", or half a minute. In the
6th and 7th propositions are computed the sines and cosines
for every minute, from l' to 45', as well as of many larger
arcs. The 8th proposition extends the computation for single
minutes much farther. In propositions 9 and 10 are com¬
puted the tangents and secants for all arcs in the series whose
common difference is 45'; and these are deduced from the
sines of the same arcs by one proportion for each. In the
remaining three propositions, 11, 12, 13, are computed the
tangents and secants for several small angles. And from all
these primary sines, tangents, and secants, the whole canon
is deduced and completed.

The remaining books in this work arc by the editor Otho;
namely, a treatise, in one book, on right-angled plane tri¬
angles, the cases of which are resolved by the tables: then
right-angled spherical trigonometry, in four books; next ob¬
lique spherical trigonometry, in five books; and lastly several
other books, containing various spherical problems.

Next after the above are placed the tables themselves, con¬
taining the sines, tangents, and secants, for every 10 seconds
in the quadrant, with all the differences annexed-to each, in
a smaller character. The numbers however are not called
sines, tangents, and secants, but, like Vieta’s, before de¬
scribed, they arc considered as representing the sides of
right-angled triangles, and are titled accordingly. They are
also, in like manner, divided into three series, namely, ac¬
cording as the radius, or constant side of the triangle, is made
the hypotenuse, or the greater leg, or the less leg of the tri¬
angle. When the hypotenuse is made the constant radius
10000000000, the two columns of this case, or series, are
called the perpendicular and base, which are our sine and
cosine; when the greater leg is the constant radius, the two
columns on this series are titled hypotenuse and perpendicu¬
lar, which are our secant and tangent; and when the less leg
is constant, the two columns in this case are called hypotenuse
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and base; which are our cosecant and cotangent. After this
Jarge canon, is printed another smaller table, rvhich is said to
be the two columns of the third series, or cosecants and co¬
tangents, with their differences, but to 3 places of figures
less, or to the radius 10000000. But I cannot discover the
reason for adding this less table, even if it were correct, which
is very far from being the case, the numbers being uniformly
erroneous, and different from the former through the greatest
part of the table.

Towards the close of the 16 th century, many persons
wrote on the subject of trigonometry, and the construction
of the triangular canon. But, their writings being seldom
printed till many years afterwards, it is not easy to assign
their order in respect of time. I shall therefore mention but
a few of the principal authors, and that without pretending
to any great precision on the score of chronological prece¬
dence.

In 1591 Philip Lansberg first published his “ Geometria
Triangulorum,” in four books, ■with the canon of sines, tan¬
gents, and secants; a brief, but very elegant work; the whole
being clearly explained : and it is perhaps the first set of
tables titled with those words. The sines, tangents, and
secants of the arcs to 45 degrees, with those of their comple¬
ments, are each placed in adjacent columns, in a very com¬
modious manner, continued forwards and downwards to 45
degrees, and then returning backwards and upwards to 90
degrees: the radius is 10000000, and a specimen of the first
page of the table is as follows :

0 Sin us Tangens Secans

0 0 10000000 0 infinitum. 10000000 infinitum. 60
1 2909- 9999999 2909 34377466738 10000000 34377468193 59
2 5818 9999998 5818 17188731915 10000002 17188734824 58

3 8727 9999996 8797 11459152994 10000004 11459157357 57
4 11636 9999993 11636 8594363048 10000007 8594368866 56

5 14544 9999989 14544 6875488693 10000011 6875495966 55

&e. &c.

II 89
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Of this work, the first book treats of the magnitude and
relations of such lines as are considered in and about the
circle, as the chords, sines, tangents, and secants. In the
second book is delivered the construction of the trigonome¬
trical canon, by means of the properties laid down in the
first book : After which follows the canon itself. And in the
third and fourth books is shown the application of the table,
in the resolution of plane and spherical triangles.—Lansberg,
who was born in Zealand 1561, was many years a minister of
the gospel, and died at Middleburg in, 1632.

The trigonometry of Bartholomew Pitiscus was first pub¬
lished at Francfort in the year 1599. This is a very com¬
plete work; containing, besides the triangular canon, with
its construction and use in resolving triangles, the applica¬
tion of trigonometry to problems of surveying, altimetry,
architecture, geography, dialling, and astronomy. The
construction of the canon is very clearly described : And, in
the third edition of the book, in the year 1612, he boasts to
have added, in this part, arithmetical rules for finding the
chords of the 3d, 5th, and other uneven parts of an arc, from
the chord of that arc being given; saying, that it had been
heretofore thought impossible to give such rules: But, after
all, those boasted methods are only the application of the
double rule of False-Position to the then known rules for
finding the chords of multiple arcs; namely, making the
supposition of some number for the required chord of a sub¬
multiple of any given arc, then from this assumed number
computing what will be the chord of its multiple arc, which
is to be compared with that of the given arc; then the same
operation is performed with another supposition; and so on,
as in the double rule of position. The canon contains the
sine, tangent, and secant, for every minute of the quadrant,
in some parts to 7 places of figures, in others to 8; as also the
differences for every 10 seconds. The sines, tangents, and
secants, are also given for every 10 seconds in the first and
last degree of the quadrant, for every 2 seconds in the first
and last 10 minutes, and for every single second in the first
and last minute. In this table, the sines, tangents, and se-
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cants, are continued downwards on the left-hand pages, as

far as to 45 degrees, and then returned upwards on the right-

hand pages, so that the complements are always on the same

line in the opposite or facing pages.

The mathematical works of Christopher Clavius (a Ger¬

man jesuit, who was born at Bamberg in 1537) in five large

folio volumes, were printed at Moguntia, or Mentz, in 1612,

the year in which the author died, at the age of 15. In the

first volume we find a very ample and circumstantial treatise

on trigonometry, with Regiomontanus’s canon of sines, for

every minute, as also canons of tangents and secants, each in

a separate table, to the radius 10000000, and in a form con¬

tinued forwards all the way up to 90 degrees. The expla¬

nation of the construction of the tables is very complete, and

is chiefly extracted from Ptolemy, Purbach, and Regiomon¬
tanus. The sines have the differences set down for each

second, that is, the quotients arising from the differences of

the sines divided by 60.

About the year 1600, Ludolph van Collen, or a Ceulen, a

respectable Dutch mathematician, wrote his book “ de cir-

culo et adscriptis,” in which he treats fully and ably of the

properties of lines drawn in and about the cir.cle, and especi¬

ally of chords or subtenses, with the construction of the canon

of sines. The geometrical properties from which these lines

are computed, are the same as those used by former writers;

but his mode of computing and expressing them is different

from theirs; for they actually extracted all the roots, &c, at

every step, or single operation, in decimal numbers ; but he

retained the radical expressions to the last, making them how¬

ever always as simple as possible: thus, for instance, he de¬

termines the sides of the po¬

lygons of 4, 8, 16, 32, &c,

sides, inscribed in the circle

whose radius is 1,-to be as

in the table here annexed:

where the point before any

figure, as V.2 signifies the

No. of
Sides. Length of each side.

4
%/2

8
^. 2-^2

16
V '. 2- v /.2 + v '2

32
•v/. 2 -■ v/.2 + ,v/. 2 - v '2

&c. &c.
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root of all that follows it; so the last line is in our notation

the same as 2 — ^/ r2+ 2 — ^2. And as the perfect
management of such surds was then not generally known,
he added a very neat tract on that subject, to facilitate the
computations. These, together with other dissertations on
similar geometrical matters, were translated from the Dutch
language, into Latin, by Willebrord Snell, and published at
(Lugd. Batav.) Leyden in 1619. It was in this work that
Ludolph determined the ratio of the diameter to the circum¬
ference of the circle, to 36 figures, showing that, if the
diameter be 1, the circumference will be
greater than 3-14159 26535 89793 23846 26433 83279 50288,
but less than 3-14159 26535 89793 23846 26433 83279 50289,
which ratio was, by his order, in imitation of Archimedes,
engraven on his tomb-stone, as is witnessed by the said Snell,
pa. 54, 55, Cyclometricus,” published at Leyden two years
after, in which he treats the same subject in a similar manner,
recomputing and verifying Ludolph’s numbers. And, in the
same book, he also gives a variety of geometrical approxi¬
mations, or mechanical solutions, to determine very nearly
the lengths of arcs, and the areas of sectors and segments of
circles.

Besides the “ Cyclometricus,” and another geometrical
work (Apollonius Battavus) published in 1608, the same
Snell wrote also four others “ doctrinas triangulorum ca¬
nonic®,” in which is contained the canon of secants, and in
which the construction of sines, tangents, and secants, toge¬
ther with the dimension or calculation of triangles, both plane
and spherical, are briefly and clearly treated. After the au¬
thor’s death, this work was published in 8vo, at Leyden,
1627, by Martinus Hortensius, who added to it a tract on
surveying and spherical problems. Willebrord Snell was
born in 1591 at Royen, and died in 1626, being only 35 }'ears
of age. He was professor of mathematics in the university
of Leyden, as was also his father Rodolph Snell.

Also in 1627, Francis van Schooten published, at Amster-
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dam, in a small neat form, tables of sines, tangents, and se¬

cants, for every minute of the quadrant, to 7 places of figures,

the radius being 10000000; together with their use in plane

trigonometry. These tables have a great character for their

accuracy, being declared by the author to be without one

single error. This however must not be understood of the

last figure of the numbers, which I find are very often errone¬

ous, sometimes in excess and sometimes in defect, by not

being always set down to the nearest unit. Schooten died

in 1659, while the second volume of his second edition of

Descartes’ geometry was in the press. He was also author

of several other valuable works in geometry, and other
branches of the mathematics.

The foregoing are the principal writers on the tables of

sines, tangents, and secants, before the invention of loga¬

rithms, which happened about this time, namely, soon after

the year 1C00. Tables of the natural numbers were now all

completed, and the methods of computing them nearly per¬

fected : And therefore, before entering on the discovery and

construction of logarithms, I shall stop here awhile to give a

summary of the manner in rvhich the said natural sines, tan¬

gents, and secants, were actually computed, after having been

gradually improved from Hipparchus, Menelaus, and Ptolemy,

who used only the chords, down to the beginning of the 17th

century, when sines, tangents, secants, and versed sines were

in use, and when the method hitherto employed had received

its utmost improvement. In this explanation, we may here

first enumerate the theorems by which the calculations were

made, and then describe the application of them to the com¬

putation itself.

Theorem 1.—The square of the diameter of a circle, is

equal to the sum of the squares of the chord of an arc, and

of the chord of its supplement to a semicircle.— -2. The rect¬

angle under the two diagonals of any quadrilateral inscribed

in a circle, is equal to the sum of the two rectangles under

the opposite sides.—3. The sum of the squares of the sine

and cosine, hitherto called the sine of the complement, is equal
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to the square of the radius.—4. The difference between the
sines of two arcs that are equally distant from 60 degrees, or
j. of the whole circumference, the one as much greater as the
other is less, is equal to the sine of half the difference of those
arcs, or of the difference between either arc and the said arc
of 60 degrees.— 5. The sum of the cosine and versed sine, is
equal to the radius.—6. The sum of the squares of the sine
and versed sine, is equal to the square of the chord, or to the
square of double the sine of half the arc.—7. The sine is a
mean proportional between half the radius and the versed
sine of double the arc.—8, A mean proportional between the
versed sine and half the radius, is equal to the sine of half
the arc.—9. As radius is to the sine, so is twice the cosine to
the sine of twice the arc.—10. As the chord of an arc, is to
the sum of the chords of the single and double arc, so is the
difference of those chords, to the chord of thrice the arc.—
11. As the chord of an arc, is to the sum of the chords of
twice, and thrice the arc, so is the difference of those chords,
to the chord of five times the arc.—12. And in general, as the
chord of an arc, is to the sum of the chords of n times and
n + 1 times the arc, so is the difference of those chords, to
the chord of 2 m + 1 times the arc.—13. The sine of the sum
of two arcs, is equal to the sum of the products of the sine of
each multiplied by the cosine of the other, and divided by
the radius.'—14. The sine of the difference of two arcs, is
equal to the difference of the said tivo products divided by
radius.—15. The cosine of the sum of two arcs, is equal to
the difference between the products of their sines and of their
cosines, divided by radius.—16. The cosine of the difference
of two arcs, is equal to the sum of the said products divided
by radius.—17. A small arc is equal to its chord or sine,
nearly.—18. As cosine is to sine, so is radius to tangent.—
19. Radius is a mean proportional between the tangent and
cotangent.—20. Radius is a mean proportional between the
secant and cosine.—21. Radius is a mean proportional be¬
tween the sine and cosecant.—22. Half the difference be¬
tween the tangent and cotangent of an arc, is equal to the
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tangent of the difference between the arc and its complement.

Or, the sum arising from the addition of double the tangent

of an arc with the tangent of half its complement, is equal to

the tangent of the sum of that arc and the said half comple¬

ment.—23. The square of the secant of an arc, is equal to

the sum of the squares of the radius and tangent.—24. The

secant of an arc, is equal to the sum of its tangent and the

tangent of half its complement. Or, the secant of the differ¬

ence between an arc and its complement, is equal to the tan¬

gent of the said difference added to the tangent of the less

arc.—25. The secant of an arc, is equal to the difference be¬

tween the tangent of that arc and the tangent of the arc

added to half its complement. Or, the secant of the differ¬

ence between an arc and its complement, is equal to the dif¬

ference between the tangent of the said difference and the

tangent of the greater arc.

From some of these 25 theorems, extracted from the writers

before mentioned, and a few propositions of Euclid’s ele¬

ments, they compiled the whole table of sines, tangents, and

secants, nearly in the following manner. By the elements

were computed the sides of a few of the regular figures in¬

scribed in a circle, which were the chords of such parts of the

whole circumference as are expressed by the number of sides,

and therefore the halves of those chords the sines of the halves

of the arcs. So, if the radius be 10000000, the sides of the

following figures will give the annexed chords and sines.

The figure.
Arcs sub¬
tended

Its chord
or side.

Half
arc.

Its sine or
i chord.

Triangle 120° 17320508 60° 8660254

Square 90 14142136 45 7071068

Pentagon 72 11755705 36 5877853
Hexagon 60 10000000 30 5000000
Decagon 36 6180340 18 3090170
Quindecagon 24 4158234 12 2079117

Of some, or all of these, the sines of the halves were con¬
tinually taken, by theorem the 6th, Th, or 8th, and of their
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complements by the 3d ; then the sines of the halves of these,
and of their complements, by the same theorems; and so on,

alternately, of the halves and complements, till they arrived

at an arc which is nearly equal to its 6ine. Thus, beginning

with the above arc of 12 degrees, and its sine, the halves were
obtained as follows:

The comp. Sines. The halves. Sines.
of these. 33° / 5446390

48° / 7431443 16 30 2840153
69 9335804 8 15 1434926
19 30 9832519 27 45 4656145
84 45 9958049
46 30 7253744 Comps.
68 15 9288095 57 S386706
45 45 7163019 73 30 9588197

— 81 45 9896514
The halves 62 15 8849876

of these.
24 4067366 Halves.
34 30 5664062 28 30 4771588
17 15 2965416 14 15 2461533
39 45 6394390 36 45 5983246
23 15 3947439

ComDS.

The comp* 61 30 87881.71
66 9135455 75 45 9692309
55 30 8241262 53 15 8012538
72 45 9550199
50 15 7688418 Half.

66 45 9187912 j 30
45 5112931

Comp.
59 15 8594064

The halves. Sines.

6° ' 1045285
3 523360
1 30 261769

45 130896

The Comp,
of these.

84 9945218
87 9986295
88 30 9996573
89 15 9999143

The halves
of these.

42 6691306
21 3583679
10 30 1822355
5 15 915016

43 30 6883545
21 45 3705574
44 15 6977905

The sines of small arcs are then deduced in this manner.

From the sine of 45', .above determined, are found the halves,
which will be thus :

45' 0" - - - - 130896

22 30 - - - - 65449,4

11 15 - - - - 32724,8

Now these last two sines being evidently in the same ratio as

their arcs, the sines of all the less single minutes will be found

by single proportion. So the 45th part of the sine of 45',
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gives 2909 for the sine of l'; which may be doubled, tripled,
&c, for the sines of 2', 3', &c, up to 45'.

Then, from all the foregoing primary sines, by the theorems
for halving, doubling, or tripling, and by those for the sums
and differences, the rest of the sines are deduced, to complete
the quadrant.

But having thus determined the sines and cosines of the
first 30° of the quadrant, that is, the sines of the first and last
30°, those of the intermediate 30° are, by theor. 4, found by
one single subtraction for each sine.

The sines of the whole quadrant being thus completed, the
tangents are found by theor. 18, 19, 22, namely, for one half
of the quadrant by the 18th and 19th, and the other half, by
one single addition or subtraction for each, by the 22d theorem.
And lastly, by theor. 24 and 25, the secants are deduced from
the tangents, by addition and subtraction only.

Among the various means used for constructing the canon
of sines, tangents, and secants, the writers above enumerated
seem not to have been possessed of the method of differences,
so profitably used since, and first of all I believe by Briggs,
in computing his trigonometrical canon and his logarithms,
as we shall see hereafter, when we come to describe those
works. They took however the successive differences of the
numbers, after they were computed, to verify or prove the
truth of them; and if found erroneous, by any irregularity
in the last differences, from thence they had a method of cor¬
recting the original numbers themselves. At least, this me¬
thod is used by Pitiscus, Trig. lib. 2, where the differences
are extended to the third order.—In page 44 of the same
book also is described, for the first time that I know of, the
common notation of decimal fractions, as now used. And this
same notation was afterwards described and used by baron
Napier, in positio 4 and 5 of his posthumous works, on the
construction of logarithms, published by his son in the year
1619. But the decimal fractions themselves maybe consi¬
dered as having been introduced by Regiomontanus, by his
decimal division of the radius, Sec, of the circle; and from
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that time gradually brought into use;, but continued long to

be denoted after the manner of vulgar fractions, by a line

drawn between the numerator and denominator, which last

however was soon omitted, and only the numerator set down,

with the line below it: thus, it was first 31-,^, then 31i-t ;

afterwards, omitting the line, it became 31 3S, and lastly 31 3S ,

or 31.35, or 31'35: as may be traced in the works of Vieta,

and others since his time, gradually into the present century.

Having often heard it remarked, that the word sine, or in

Latin and French sinus, is of doubtful origin; and as the va¬

rious accounts which I have seen of its derivation are very

different from one another, it may not be amiss here to em¬

ploy a few lines on this matter. Some authors say, this is an

Arabic word, others that it is the single Latin word sinus;

and in Montucla’s “ Histoire des Mathematiques” it is con¬

jectured to be an abbreviation of two Latin words. The

conjecture is thus expressed by the ingenious and learned

author of that excellent history, at p. xxxiii, among the addi¬
tions and corrections of the first volume: “ A l’occasion des

sinus dont on parle dans cette page, comme d’une invention

des Arabes, voici une dtymologie de ce nom, tout-a-fait heu-

reuse et vraisemblable. Je ladois a M. Godin, de l’Academie

Royale des Sciences, Directeur de l’Ecole de Marine de Cadix.

Les sinus sont, comme l’on scait, des moities de cords; etles

cordes en Latin se nomment inscriptee. Les sinus sont done

semisses inscriptarum, ce que probablement on ecrivit ainsi

pour abreger, S. Ins. Dela ensuite s’est fait par abus le mot

de sinus.” Now, ingenious as this conjecture is, there ap¬

pears to be little or no probability for the truth of it. For,

in the first place, it is not in the least supported by quotations

from any of the more early books, to show that it ever was the

practice to write or print the words thus, S. Ins. upon which

the conjecture is founded. Again, it is said the chords are call¬

ed in Latin inscriptie; and it is true that they sometimes are so:

but 1 think they are more frequently called subtense?, and the

sines semisses subtensarum of the double arcs, which will not

abbreviate into the word sinus. This conjecture the learned



TRACT 19. TRIGONOMETRICAL TABLES, See. 303

author has relinquished in the new edition of his history. But

it may he said, what reason have we to suppose that this word

is either a Latin word, or the abbreviation of any Latin words

whatever? and that it seems but proper to seek for the ety¬

mology of words in the language of the inventors of the things.

For which reason it is, that we find the two other words,

tangens and secans, are Latin, as they were invented and used

by authors who wrote in that language. But the sines are

acknowledged to have been invented and introduced by the

Arabians, and thence by analogy it wmuld seem probable that

this is a word of their language, and from them adopted, to¬

gether with the use of it, by the Europeans. And indeed

Lansberg, in the second page of his trigonometry above-

mentioned, expressly says, that it is Arabic : His words are,

Vox smus Arabica est, et proinde barbara; sed cum longo usu

approbata sit, et commodior non suppetat, nequaquam repudi-

anda est: faciles enim in verbis nos esse oportet, citm de rebus

convemt. And Vieta says something to the same purport, in

page 9 of his “ Universalium Inspectionum ad Canonem

Mathematicum Liber:” His words are, Breve sinus vocabulum ,

dim sit artis, Saracenis prasertim qudm familiare, non est ab

arlificibus explodendum, ad laterum semissium inscriptorum

denotationem, Sic.

Guarinus also is of the same opinion : in his “ Euclides

Adauctus,” &c. tract xx. pa. 301, he says, Sinus vero est

nomen Arabicum usurpatum in hanc significationcm d nuithe-

maticis; though he was aware that a Latin origin was as¬

cribed to it by Vitalis, for he immediately adds, Licet Vitalis

in suo Lexico Mathematico ex eo velit sinum appeUatum, quod
claudat curvitatem arcus.

Long before I either saw or heard of any conjecture, or

observation, concerning the etymology of the word sinus, 1

remember that I imagined it to be taken from the same Latin

word, signifying breast or bosom, and that our sine was so

called allegorically. I had observed, that several of the terms

in trigonometry were derived from a bow to shoot with, and

its appendages; as arcus the bow, chorda the string, and
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sagitta tlie arrow, by which name the versed sine, which re¬
presents it, was sometimes called; also, that the tangens was
so called from its office, being a line touching the circle, and
secerns from its cutting the same: I therefore, imagined that the
sinus was so called, either from its resemblance to the breast
or bosom, or from its being a line drawn within the bosom
('sinus) of the arc, or from its being that part of the string
(chorda) of a bow (arcus) which is drawn near the breast
(sinus) in the act of shooting. And perhaps Vitalis’s defini¬
tion, above-quoted, has some allusion to the same similitude.

Also Vieta seems to allude to the same thing, in calling
sinus an allegorical word, in page 417 of his works, as pub¬
lished by Scbooten, where, with his usual judgment and
precision, he treats of the propriety of the terms used in
trigonometry for certain lines drawn in and about the circle ;
of which, as it verv well deserves, I shall here extract the
principal part, to show the opinion and arguments of so great
a man on those names. “ Arabes autem semisses inscriptas
dtiplo, numcris prtesertim cestimatas, vocaverunt allegorice
Sinus, atque ideo ipsam semi-diametrum, quae maxima est
semissium inscriptarnm, Sinum Totum. Et de iis sua me-
thodo canones exiverunt qui circumferuntur, supputante
preesertim Regiomontuno bene juste et accurate, in iis etiam
particulis qualium semidiameter adsumitur 10,000,000.

“ Ex canonibus deinde sinuum derivaverunt recentiores
canonem semissium circumscriptarum, quern dixere Ftecun-
dum; et canonem eductarum e centre, quem dixere Foccun-
dissinium et Beneficum, hypotenusis addictum. Atque a deb
semisses circumscriptas, numeris prsesertim sestimatas, voca¬
verunt F<zcu?idos, Sinus numcrosve videlicet; quanquam nihil
vetat Fci’cundi nomen substantive accipi. Ilypotenusas autem
Beneficas, vel etiam simpliciter Hypotenusas: quoniam hy-
potenusa in primfi. serie sinus totius nomen rctinet. Itaque
ne novitate verborum res adumbretur, et alioqui sua artifici-
bus, eo nomine dibita, preeripiatur gloria, prseposita in
Canone Mathematico canonicis numeris inscriptio, candide
admonet primam seriem esse Canonem Sinuum. In secunda
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vero, partem canonis foecundi, partem canonis fcEcundissimi,
cotineri. In tertia, reliquam.

“ Sane praeter inscriptas et circumscriptas, circulum etiam

adficiunt aliae lineae recto:, velut Incidentes, Tangentes, et

Secantes. Verum illas voces substantival sunt, non periphe-

riarum relativse. Ac secure' quidem circulum linea recta

tunc intelligitur, cum in duobus punctis secat. Itaque non

loquuntur bene geometrice, qui eductas e centro ad metas cir-

cumscriptarum vocant secantes improprie, cum secantes et

tangentes ad certos angulosvel peripherias referunt. Imm?)

verb artem confundunt, cum his vocibus necesse liabeat uti

gcometra abs relatione.

“ Quare si quibus arrideat Arabum metaphora; quae quidem

aut oinninb retinenda videtur, aut omnino explodenda ; ut

semisses inscriptas, Arabes vocant sinus ; sic semisses circum-

scriptoe, vocentur Prosinus Amsinusve; et eductce e centro

Transinuosae. Sin allegoria displiceat, geometrica sane in-

scriptarum et circumscriptarum nomina retineantur. Et cum

eductEE e centro ad metas circumscriptarum, non habeant

hactenus nomen certum neque elcgans, voceantur sane pro-

scmidiametri, quasi protensae semidiametri, se habentes ad

suas circumscriptas, sicut semidiametri ad inscriptas.”

Against the Arabic origin however of this word (sinus)

may be urged its being varied according to the fourth de¬

clension of Latin nouns, like maims; and that if it were an

Arabic word latinized, it would have been ranked under

either the first, second, or third declension, as is usual in such

adopted words.

So that, upon the whole, it will perhaps rather seem pro¬

bable, that the term sinus is the Latin word answering to the

name by which the Saracens called that line, and not then

word itself. And this conjecture seems to be rendered still

more probable by some expressions in pa. 4 and 5 of Otho’s

“ Preface to Rheticus’s Canon,” where it is not only said,

that the Saracens called the half-chord of double the arc sinus,

but also that they called the part of the radius lying between

the sine and the arc sinus versus, vel sagitta , which are evi-
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dently Latin words, and seem to be intended for the Latin

translations of the names by which the Arabians called these

lines, or the numbers expressing the lengths of them.

And this conjecture has been confirmed and realised, by a
reference to Golius’s Lexicon of tbe Arabic and Latin lan¬

guages. In consequence I find that the Arabic and Latin

writers on trigonometry do both of them use those words in

the same allegorical sense, the latter being the Latin trans¬

lations of the former, and not the Arabic words corrupted.

Thus, the true Arabic word to denote the trigonometrical

sine is pronounced Jeib, (reading the vowels in the

French manner), meaning sinus indusii, vestisque, the bosom

part of the garment; the versed sine is Sehun, which

is sagitta, the arrow; the arc is which is arcus, the arc;

and the chord is y «, Vitr, that is chorda, the chord.

TRACT XX.

HISTORY OF LOGARITHMS.

The trigonometrical canon, of natural sines, tangents, and

secants, being now brought to a considerable degree of per¬

fection; the great length and accuracy of the numbers, toge¬

ther with the increasing delicacy and number of astronomical

problems, and spherical triangles, to the solution of which

the canon was applied, urged many persons, conversant in

those matters, to endeavour to discover some means of dimi¬

nishing tiie great labour and time, requisite for so many mul¬

tiplications and divisions, in such large numbers as tbe tables

then consisted of. And their chief aim was, to reduce the

multiplications and divisions to additions and subtractions, as

much as possible.

For this purpose, Nicholas llajuner Ursus Dithmarsus in¬

vented an ingenious method, which serves for one case in the
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sines, namely, when radius is the first term in the proportion,

and the sines of two arcs are the second and third terms ; for

he showed, that the fourth term, or sine, would be found by

only taking half the sum or difference of the sines of two other

arcs, which should be the sum and difference of the less of the

two former given arcs, and the complement of the greater.

This is no more, in effect, than the following well-known

theorem in trigonometry: as half radius is to the sine of one

arc, so is the sine of another arc, to the cosine of the differ¬

ence minus the cosine of the sum of the said arcs. The au¬

thor published this ingenious device, in 1588, in his “ Fun-

damentum Astronomies.” And three or four years afterwards

it w ras greatly improved by Clavius, who adapted it to all

proportions in the solution of spherical triangles, for sines,

tangents, secants, versed sines, &c; and that whether radius

be in the proportion or not. All which he explains very fully 5"

in lem. 53, lib. ], of his treatise on the Astrolabe. See more

on this subject in Longomont. Astron. Danica. pa. 7, et seq.

This method, though ingenious enough, depends not on any

abstract property of numbers, but only on the relations of

certain lines, drawn in and about the circle; for which rea¬

son it was rather limited, and sometimes attended with trouble

in the application.

After perhaps various other contrivances, incessant endea¬

vours at length produced the happy invention of logarithms,

which are of direct and universal application to all numbers

abstractedly considered, being derived from a property inhe¬

rent in numbers themselves. This property maybe considered,

either as the relation between a geometrical series of terms

and a corresponding arithmetical one, or as the relation be¬

tween ratios and the measures of ratios, which comes to much

the same thing, having been conceived in one of these ways

by some of the writers on this subject, and in the other'by

the rest of them, as well as in both ways at different times by

the same writer. A succinct idea of this property, and of the

probable reflections made on it by the first writers on loga¬

rithms, may be to the following effect:
x 2
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The learned calculators, about the close of the 16th, and

beginning of the 17th century, finding the operations of mul¬

tiplication and division by very long numbers, of 7 or 8 places

of figures, which they had frequently occasion to perform, in

resolving problems relating to geography and astronomy, to

be exceedingly troublesome, set themselves to consider,

whether it was not possible to find some method of lessening

this labour, by substituting other easier operations in their

stead. In pursuit o-f this object, they reflected, that since,

in every multiplication by a whole number, the ratio, or pro¬

portion, of the product to the multiplicand, is the same as the

ratio of the multiplier to unity, it will follow that the ratio

of the product to unity (which, according to Euclid's defini¬

tion of compound ratios, is compounded of the ratios of the

said product to the multiplicand and of the multiplicand to

unity), must be equal to the sum of the two ratios of the mul¬

tiplier to unity and of the multiplicand to unity. Conse¬

quently, if they could find a set of artificial numbers that

should be the representatives of, or should be proportional to,

the ratios of all sorts of numbers to unity, the addition of the

two artificial numbers that should represent the ratios of any

multiplier and multiplicand to unity, would answer to the

multiplication of the said multiplicand by the said multiplier,

or the sum arising from the addition of the said representative

numbers, would be the representative number of the ratio of

the product to unity; and consequently, the natural number

to which it should be found, in the table of the said artificial

or representative numbers, that the said sum belonged, would

be the product of the said multiplicand and multiplier.

Having settled this principle, as the foundation of their

wished-for method of abridging the labour of calculations,

they resolved to compose a table of such artificial numbers,

or numbers that should be representatives of, or proportional

to, the ratios of all the common or natural numbers to unity.

The first observation that naturally occurred to them in tha

pursuit of this scheme was, that whatever artificial numbers

should be chosen to represent the ratios of other whole nutn-



mucT 20. LOGARITHMS. 309

bers to unity, the ratio of equality, or of unity to unity, must

be represented by 0; because that ratio has properly no mag¬

nitude, since, when it is added to, or subtracted from, any

other ratio, it neither increases nor diminishes it.

The second observation that occurred to them was, that

any number whatever might be chosen at pleasure for the

representative of the ratio of any given natural number to

unity; but that, when once such choice was made, all the

other representative numbers would be thereby determined,

because they must be greater or less than that first represen¬

tative number, in the same proportions in which the ratios

represented by them, or the ratios of the corresponding na¬

tural numbers to unity, were greater or less than the ratio of

the said given natural number to unity. Tlius, either 1, or

2, or 3, &c, might be chosen for the representative of the

ratio of 10 to 1. But, if 1 be chosen for it, the representa¬

tives of the ratios of 100 to 1 and 1000 to 1, which are double

and triple of the ratio of 10 to 1, must be 2 and 3, and can¬

not be any other numbers; and, if 2 be chosen for it, the re¬

presentatives of the ratios of 100 to 1 and 1000 to l, will be

4 and 6, and cannot be any other numbers; and, if 3 be cho¬

sen for it, the representatives of the ratios of 100 to 1 and

1000 to 1, will be 6 and 9, and cannot be any other numbers;
and so on.

The third observation that occurred to them was, that, as

these artificial numbers were representatives of, or propor¬

tional to, ratios of the natural numbers to unity, they must

be expressions of the numbers of some smaller equal ratios

that are contained in the said ratios. Thus, if 1 be taken for

the representative of the ratio of 10 to 1, then 3, which is the

representative of the ratio of 1000 to 1, will express the num¬
ber of ratios of 10 to 1 that are contained in the ratio of 1000

to 1. And if, instead of 1, we make 10,000,000, or ten mil¬

lions, the representative of the ratio of 10 to 1, (in which case

1 will be the representative of a very small ratio, or ratiuncula ,

which is only the ten-millionth part of the ratio of 10 to 1,

or will be the representative of the 10,000,000th root of 10,
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or of the first or smallest of 9,999,999 mean proportionals

interposed between 1 and 10), the representative of the ratio

of 1000 to 1, which will in this case be 30,000,000, will ex¬

press the number of those ratiuncida, or small ratios of the

10,000,000th root of 10 to 1, which are contained in the said

ratio of 1000 to 1. And the like may be shown of the repre¬

sentative of the ratio of anj^ other number to unity. And

therefore they thought these artificial numbers, which thus

represent, or are proportional to, the magnitudes of the ratios

of the natural numbers to unity, might not improperly be

called the Logarithms of those ratios, since they express the

numbers of smaller ratios of which they are composed. And

then, for the sake of brevity, they called them the Logarithms

of the said natural numbers themselves, which are the antece¬

dents of the said ratios to unity, of which they are in truth

the representatives.

The foregoing method of considering this property leads

to much the same conclusions as the other way, in which the

relations between a geometrical series of terms, and their ex¬

ponents, or the terms of an arithmetical series, are contem¬

plated. In this latter way, it readily occurred that the addi¬

tion of the terms of the arithmetical series corresponded to

the multiplication of the terms of the geometrical series; and
that the arithmeticals would therefore form a set of artificial

numbers, which, when arranged in tables, with their geome¬

trical, would answer the purposes desired, as has been ex¬

plained above.

From this property, by assuming four quantities, two of

them as two terms in a geometrical series, and the others as

the two corresponding terms of the arithmeticals, or artificials,

or logarithms, it is evident that all the other terms of both

the two series may thence be generated. And therefore there

m'ay be as many sets or scales of logarithms as we please,

since they depend entirely on the arbitrary assumption of the

first two arithmeticals. And all possible natural numbers

may be supposed to coincide with some of the terms of any

geometrical progression whatever, the logarithms or arith-
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meticals determining which of the terms in that progression
they are.

It was proper however that the arithmetical series should
be so assumed, as that the term 0 in it might answer to the
term 1 in the geometricals; otherwise the sum of the loga¬
rithms of any two numbers would be always to be diminished
by the logarithm of 1, to give the logarithm of the product
of those numbers : for which reason, making 0 the logarithm
of 1, and assuming any quantity whatever for the value of the
logarithm of any one number, the logarithms of all other num¬
bers were thence to be derived. And hence, like as the mul¬
tiplication of two numbers is effected by barely adding their
logarithms, so division is performed by subtracting the loga¬
rithm of the one from that of the. other, raising of powers by
multiplying the logarithm of the given number by the index
of the power, and extraction of roots by dividing the loga¬
rithm by the index of the root. It is also evident that, in all
scales or systems of logarithms, the logarithm of 0 will be in¬
finite; namely, infinitely negative if the logarithms increase
with the natural numbers, but infinitely positive if the
contrary; because that, while the geometrical series must
decrease through infinite divisions by the ratio of the progres¬
sion, before the quotient come to 0 or nothing; the logarithms,
or arithmeticals, will in like manner undergo the correspond¬
ing infinite subtractions or additions of the common equal
difference; which equal increase or decrease, thus indefinitely
continued, must needs tend to an infinite result.

This however was no newly-discovered property of num¬
bers, but what was always well known to all mathematicians,
being treated of in the writings of Euclid, as also by Archi¬
medes, who made great use of it in his Arenarius, or treatise
on the number of the sands, namely, in assigning the rank or
place of those terms, of a geometrical series, produced from
the multiplication together of any of the foregoing terms, by
the addition of the corresponding terms of the arithmetical
series, which served as the indices or exponents of the former.
Stifelius also treats very fully of this property at folio 35 et
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seq. and there explains all its principal uses as relating to

the logarithms of numbers, only without the name ; such as,

that addition answersto multiplication, subtraction to division,

multiplication of exponents to involution, and dividing of

exponents to evolution; all which he exemplifies in the rule-

of-three, and in finding several mean proportionals, &c,

exactly as is done in logarithms. So that he seems to have

been in the full possession of the idea of logarithms, but

•without the necessity of making a table of such numbers.

For the reason why tables of these numbers were not sooner

composed, was, that the accuracy and trouble of trigonome¬

trical computations had not sooner rendered them necessaiy.

It is therefore not to be doubted that, about the close of the

sixteenth and beginning of the seventeenth century, many

persons had thoughts of such a table of numbers, besides the

few who are said to have attempted it.

It has been said by some, that Longomontanus invented

logarithms: but this cannot well be supposed to have been

any more than in idea, since he never published any thing of

the kind, nor ever laid claim to the invention, though he lived

thirty-three years after they were first published by baron

Napier, as he died only in 1647, when they had been long

known and received all over Europe. Nay more, Longo¬

montanus himself ascribes the invention to Napier: vid.

Astron. Danica, p. 7, &c. Some circumstances of this matter

are indeed related b}^ Wood in bis “ Athense Oxonienses,”

under the article Briggs, on the authority of Oughtred and

Wingate, viz. “ That one Dr. Craig, a Scotchman, coming-

out of Denmark into bis own country, called upon Job. Neper

baron of Marcheston near Edenburgh, and told him among

other discourses, of a new invention in Denmark (by Longo¬

montanus as ’tis said) to save the tedious multiplication and

division in astronomical calculations. Neper being solicitous

to know farther of him concerning this matter, he could give

no other account of it, than that it was by proportionable

numbers. Which hint Neper taking, he desired him at his

return to call upon him again. Craig, after some weeks had
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passed, did so, and Neper then showed him a rude draught

of that he called Canon mirabilis Logarithmorum. Which

draught, with some alterations, he printing in 1614, it came

forthwith into the hands of our author Briggs, and into those

of Will. Oughtred, from whom the relation of this matter
came.”

Kepler also says, that one Juste Byrge, assistant astronomer

to the landgrave of Hesse, invented or projected logarithms

long before Neper did ; but that they had never come abroad,
on account of the great reservedness of their author vith re-O

gard to his own compositions. It is also said, that Byrge

computed a table of natural sines for every two seconds of

the quadrant.

But whatever may have been said, or conjectured, concern¬

ing any thing that may have been done by others, it is certain

that the world is indebted, for the first publication of loga¬

rithms, to John Napier, or Nepair*, or in Latin, Neper, baron

of Merchiston, or Markinston, in Scotland, who died the 3d

of April 1618, at 61 years of age. Baron Napier added con¬

siderable improvements to trigonometry, and the frequent

numeral computations he performed in this branch, gave

occasion to his invention of logarithms, in order to save part

of the trouble attending those calculations; and for this rea¬

son he adapted his tables peculiarly to trigonometrical uses.

» The origin of which name, Crawfurd informs us, was from a (less) peer less
action of one of his ancestors, viz. Donald, second son of the earl of Lenox, in
the time of David the Second. “ Some English writers, mistaking the import of
the term baron, having called this celebrated person lord Napier, a Scotch noble¬
man. He was not indeed a peer of Scotland: but the peerage of Scotland in¬
forms us, that he was of a very ancient, honourable, and illustrious family ; that
his ancestors, for many generations, had been possessedof sundry baronies, and,
amongst others, of the barony of Merchistoun, which descended to him by the
death of his father in 1608. Mr. Briggs, therefore, very properly styles him
Baro Merchestonii.Now, according to Skene, dc verborum signijicatione, * In this
realm (of Scotland) he is called a Baronne, quha haldis his landes immediatelie
in chiefe of the king, and hes power of Pit and Gallows; Fossa etFurca; quhilk
was first institute and granted be king Malcome, quha gave power to the Barroncs
to have arie Pit, quhairin wemen condemned for thieft suld be drowned, and ane
Gallows, whereupon men thieves and trespassovvres'suldbe hanged, conforme to
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This discovery he published in 1614, in his book intitled
“ Mirifici Logarithmorum Canonis Descriptio,” reserving the
construction of the numbers till the sense of the learned con¬

cerning his invention should be known. And, excepting the
construction, this is a perfect work on this kind of logarithms,
containing in effect the logarithms of all numbers, and the
logarithmic sines, tangents, and secants, for every minute of
the quadrant, together with the description and uses of the
tables, as also his definition and idea of logarithms.

Napier explains his notion of logarithms by lines described
or generated by the motion of points, in this manner : lie first
conceives a line to be generated by the equable motion of a
point, which passes over equal portions of it in equal small
moments or portions of time: he then considers another line
as generated by the unequal motion of a point, in such man¬
ner, that, in the aforesaid equal moments or portions of time,
there may be described or cut off, from a given line, parts
which shall be continually in the same proportion with the
respective remainders, of that line, which had before been
left: then are the several lengths of the first line, the loga-
rithms of the corresponding parts of the latter. Which
description of them is similar to this, that the logarithms are
a series of quantities or numbers in arithmetical progression,
adapted to another series in geometrical progression. The

the doome given in the Baron Court thercanent/ So that a Scotch baron,
though no peer, was nevertheless a very considerable personage, both in dignity
and power. 5’ Reid's Essay on Logarithms .—The name of the illustrious inventor of
logarithms, has been variously written at different times, and on different occa¬
sions. In his own Latin works, and in (perhaps) all other books in Latin, it is
Neper, or Neperus Baro Merchestonii: By Briggs, in a letter to Archbishop Usher,
he is called Naper , lord of Mariinston : In Wright’s translation of the logarithms,
which was revised by the author himself, and published in 1616, he is called
Nepair, baron of Merchiston ; and the same by Crawfurd and some others: But
M lKenzie and others write it Napier, baron of Merchiston; which, being also the
orthography nqw used by the family, I shall adopt in this work. I observe
also, that the Scotch Compendium of Honour says he was only Sir John Napier,
and that his son aud heir Archibald, was the first lord, being raised to that dig¬
nity in 1626. Be this however os it may, I shall conform to the common modes
of expression, and call him indifferently, Baron Napier , or Lord Napier,
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first or whole length of the line, which is diminished in geo¬

metrical progression, he makes the radius of a circle, and its

logarithm 0 or nothing, representing the beginning ot the

first or arithmetical line; and the several proportional re¬

mainders of the geometrical line, are the natural sines of all

the other parts of the quadrant, decreasing down to nothing,

while the successive increasing values of the arithmetical line,

are the corresponding logarithms of those decreasing sines:

so that, while the natural lines decrease from radius to nothing,

their logarithms increase from nothing to infinite. Napier

made the logarithm of radius to be 0, that he might save the

trouble of adding or subtracting it, in trigonometrical pro¬

portions, in which it so frequently occurred; and he made the

logarithms of the sines, from the entire quadrant down to 0,

to increase, that they might be positive, and so in his opinion

the easier to manage, the sines being of more frequent use

than the tangents and secants, of which the whole of the latter

and half the former would, in his wav, be of a different affec¬

tion from the sines; for it is evident that the logarithms of

all the secants in the quadrant, and of all the tangents above

45°, or the half quadrant, would be negative, being the loga¬

rithms of numbers greater than the radius, whose logarithm

is made equal to 0 or nothing.

As to the contents of Napier’s table; it consists of the na¬

tural sines anti their logarithms, for every minute of the

quadrant. Like most other tables, the arcs are continued to

45 degrees from top to bottom on the left-hand side of the

pages, and then returned backwards from bottom to top on

the right-hand side of the pages: so that the arcs and their

complements, with the sines, natural and logarithmic, stand

on the same line of the page, in six columns; and in another

column, in the middle of the page, are placed the differences

between the logarithmic sines and cosines, on the same lines,

and in the ad jacent columns on the right and left; thus making

in all seven columns in each page. Of these columns, the first

and seventh contain the arc and its complement, in degrees

and minutes; the second and sixth, the natural sine and co-
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sine of each are ; the third and fifth, the logarithmic sine and
cosine; and the fourth, or middle column, the difference be¬
tween the logarithmic sine and cosine which are in the third
and fifth columns. To elucidate the description, the first
page of the table is here inserted, as follows.

Gr.
min.

0
Sinus. Logarithms + | —

Differentiae. Logarithms
j Sinus.

0 0 Infinitum. Infinitum. O 10000000 60
1 2909 81425681 81425680 i 10000000 59
2 5818 74494213 74404211 2 9999998 58

3 8727 70439560 70439560 4 9999996 57
4 11636 67562746 67562739 7 9999993 56
5 14544 65331315 65331304 11 9999989 55

6 17453 63508099 63508083 16 9999984 54
7 20362 61966595 61966573 22 9999980 53
8 23271 60631284 60631256 28 9999974 52

9 26180 59453453 59453418 35 9999967 51
10 29088 58399857 58399814 43 9999959 50
11 31997 57446759 57446707 52 9999950 49

12 34906 56576646 56576584 62 9999940 48
13 37815 55776222 55776149 73 9999928 47
14 40724 55035148 55035064 84 9999917 46

IS 43632 54345225 54345129 96 9999905 45
16 46541 53699843 53699734 109 9999892 44
17 49450 53093600 53093577 123 9999878 43

18 52359 52522019 52521881 138 9999863 42
19 55268 51981356 51981202 154 S999847 41
20 58177 51468431 51468361 170 9999831 40

21 610S6 50980537 50980450 137 9999813 39
22 63995 50515342 50515137 205 9999795 38
23 66904 50070827 50070603 224 ; 9999776 37

24 69813 49645239 49644995 244 ! 9999756 36
25 72721 49237030 49236765 265 9999736 35
26 75630 48844826 48844539 2S7 9999714 34

27 78539 48467431 48467122 309 9999602 33
28 81448 48103763 48103431 332 9999668 32
29 84357 47752859 47752503 556 | 9999644 31

30 87265 47413852 47413471 3S1 ! 9999619 30
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Besides the columns which are actually contained in this

table, as above exhibited and described, namely, the natural

and logarithmic sines, and their differences, the same table is

made to serve also for the logarithmic tangents and secants

of the whole quadrant, and for the logarithms of common

numbers. For, the fourth or middle column contains the

logarithmic tangents, being equal to the differences between

the logarithmic sines and cosines, when the logarithm of ra¬

dius is 0, because cosine : sine : : radius : tangent, that is, in

logarithms, tangent = sine — cosine. Also the logarithmic

sines, made negative, become the logarithmic cosecants, and

the logarithmic cosines made negative, are the logarithmic

secants ; because sine -.radius :: radius : cosecant, and cosine :

radius : : radius : secant; that is, in logarithms, cosecant = 0

— sine = — sine, and secant = 0 — cosine — — cosine. And

to make it answer the purpose of a table of logarithms of

common numbers, the author directs to proceed thus: A

number being given, find that number in any table of natural

sines, or tangents, or secants, and note the degrees and mi¬

nutes in its arc; then in his table find the corresponding-

logarithmic sine, or tangent, or secant, to the same number

of degrees and minutes ; and it will be the required logarithm

of the given number.

After his definitions and descriptions of logarithms, Napier

explains his table, and illustrates the precepts with examples,

showing how to take out the logarithms of sines, tangents,

secants, and of common numbers; as also how to add and

subtract logarithms. He then proceeds to teach the uses of

those numbers; and first, in finding any of the terms of three

or four proportionals, showing how to multiply and divide,

and to find powers and roots, by logarithms: 2dly, in trigo¬

nometry, both plane and spherical, but especially the latter,

in which he is very explicit, turning all the theorems for

every case into logarithms, computing examples to each in

numbers, and then enumerating a set of astronomical pro¬

blems of the sphere which properly belong to each case.

Napier here teaches also some new theorems in spherical
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trigonometry, particular!} 7, that the tangent of half the base :
tang, i sum legs :: tang. ~ dif, legs : tang. the alternate
base; and the general theorem for what are called his five
circular parts, by which he condenses into one rule, in two
parts, the theorems for all the cases of right-angled spherical
triangles, which had been separate]} 7demonstrated by Pitiscus,
Lansbergius, Copernicus, Regiomontanus, and others.

The description and use of Napier’s canon being in the
Latin language, they were translated into English by Mr.
Edward Wright, an ingenious mathematician, and inventor
of the principles of what has commonly, though erroneously,
been called Mercator’s Sailing. He sent the translation to
the author, at Edinburgh, to be revised by him before publi¬
cation; who having carefully perused it, returned it with his
approbation, and a few lines introduced besides into the trans¬
lation. But, Mr. Wright dying soon after he received it
back, it was after his death published, together with the
tables, but each number to one figure less, in the year 1616,
by liis son Samuel Wright, accompanied with a dedication to
the East-India Company, as also a preface by Henry Briggs,
of whom we shall presently have occasion to speak more at
large, on account of the great share he bore in perfecting
the logarithms. In this translation, Mr. Briggs gave also the
description and draught, of a scale that had been invented by
Mr. Wright, and several other methods of his own, for finding
the proportional parts to intermediate numbers, the logarithms
having been only printed for such numbers as were the natural
sines of each minute. And the note which Baron Napier
inserted in this English edition, and which was not in the
original, was as follows: But because the addition and sub¬
traction of these former numbers may seem somewhat pain¬
ful, 1 intend (if it shall please God) in a second edition, to
set out such logarithms as shall make those numbers above
written to fall upon decimal numbers, such as 100,000,000,
200,000,000, 300,000,000, &c, which are easie to be added or
abated to or from any other number.” This note had reference
to the alteration of the scale of logarithms, in such manner, that
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1 should become the logarithm of the ratio of 10 to 1, instead
of the number 2.3025851, which Napier had made that loga¬
rithm in his table, and which alteration had before been re¬
commended to him by Briggs, as we shall see presently.
Napier also inserted a similar remark in his “ Rabdologia,”
which he printed at Edinburgh in 1617.

The following is the preface to * VV'right’s book, which, as
far as where it mentions the change from the Latin into En¬
glish, is a literal translation of the preface to Napier’s original;
but what follows that, is added by Napier himself. And I
willingly insert it here, as it contains a declaration of the
motives which led to this discovery, and as the book itself is
very scarce. “ Seeing there is nothing (right well beloved
students in the mathematics) that is so troublesome to Ma¬
thematical! practise, nor that doth more molest and hinder
Calculators, than the Multiplications, Divisions, square and

* Of this ingenious man I shall here insert in a note the following memoirs, as
they have been translated from a Latin piece taken out of the annals of Gonvile
and Cains College at Cambridge,viz. “ This year (1615) died at London, Edward
Wright of Garveston in Norfolk, formerly a fellow of this college; a man re¬
spected by all for the integrity and simplicity of his maimers, and also famous
for his skill in the mathematical sciences : insomuch that he was deservedly
styled a most excellent mathematician by Richard Hackluyt, the author of an
original treatise of our English navigations. What knowledge he had acquired
in the science of mechanics, and how usefully he employed that knowledge to
the public as well as private advantage, abundantly appear both from the writings
he published, and from the many mechanical operations still extant, which are
standing monuments of his great industry and ingenuity. He was the first un¬
dertaker of that difficult but useful work, bjr which a little river is brought from
the town of Ware in a new canal, to supply the city of London with water; but
by the tricks of others he was hindered from completing the work he had begun.
He was excellent both in contrivance and execution; nor was he inferior to the
most ingenious mechanic in the making of instruments, either of brass, or any
other matter. To his invention is owing whatever advantage Hondius’s geogra¬
phical charts have above others; for it was our Wright that taught Jodocus
Hondius the method of constructing them, which was till then unknown: but the
ungrateful Hondius concealed the name of the true author, and arrogated the
glory of the invention to himself. Of this fraudulent jnaotice the good man
could not help complainiug, and justly enough, in the preface to his Treatise of
the Correction of Errors in the Art of Navigation ; which he composedwith ex¬
cellent judgment, and after long experience, to the great advancement of naval
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cubical Extractions of great numbers, which, besides the

tedious expence of time, arc; for the most part subject to

many slippery errors: I began therefore to consider in my

minde, by what certaine and ready Art I might remove those

hindrances. And having thought upon many things to this

purpose, I found at length some excellent briefe rules to be

treated of (perhaps) hereafter. But amongst all, none more

profitable then this, which together with the hard and tedious

Multiplications, Divisions, and Extractions of rootes, doth also

cast away from the worke it selfe, even the very numbers

themselves that are to be multiplied, divided, and resolved

into rootes, and putteth other numbers in their place, which

performe as much as they can do, onely by Addition and

Subtraction, Division by two, or Division by three; which

secret invention, being (as all other good things are) so much

the better as it shall be the more common; 1 thought good

affairs. For the improvement of this art he was appointed mathematical lecturer
by the East India Company, and road lectures in the house of that worthy knight
Sir Thomas Smith, for which he had a yearly .salary of 50 pounds. Tiiis oflice
he discharged with great reputation, and much to the satisfaction of his hearers.
He published in English, a book on the doctrine of the sphere, and another con¬
cerning the construction of suu*dials. He also pretixed an ingenious preface to
the learned Gilbert’s book on the loadstone. l»y these and other his writings, he
has transmitted his fame to latest posterity. While he was yet a fellow of this
college, he could not be concealed in his private study, but was called forth to
the public business of the kingdom, by the queen’s majesty, about the year-1593.
He was ordered to attend the earl of Cumberland in some maritime expeditions.
One of these he has given a faithful account of, in the way of a journal or ephe-
meris, to which he has pretixed an elegant hydrographical chart of his own
contrivance. A little before his death, he employed himself about an English
translation of the book of logarithms, then lately found out by the honourable
Baron Napier, a Scotchman, who had a great affection for him. This posthumous
work of his was published soon after, by his only son Samuel VVrigh!, who was
also a scholar of this college. He had formed many other useful designs, but was
hindered by death from bringing them to perfection. Of him it may be truly-
said, that he studied more to serve the public than himself- and though he
was rich in fame, and in the promises of the great, yet he died poor, to the
scandal of an ungrateful age.”

Other anecdotes of him, as well as many other mathematical authors, may be
found in the curious history of navigation by I)r. James Wilson, prefixed to Mr.
Robertson’s excellent treatise on that subject.
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heretofore to set forth in Latine for the publique use of

Mathematicians. But now some of our Countrymen in this

Island well affected to these studies, and the more publique

good, procured a most learned Mathematician to translate

the same into our vulgar English tongue, who after he had

finished it, sent the Coppy of it to me, to be seene and con¬

sidered on by myself. I having most willingly and gladly

done the same, finde it to bee most exact and precisely con¬

formable to my minde and the original!. Therefore it may

please you who are inclined to these studies, to receive it from

me and the Translator, with as much good will as we recom¬

mend it unto you. Fare yee well.”

There are also extant copies of Wright’s translation w'ith

the date 1618 in the title: but this is not properly a new

edition, being only the old v rork with a new title-page adapted

to it (the old one being cancelled), together with the addition

of sixteen pages of new matter, called “ An Appendix to the

Logarithms, shewing the practice of the calculation of tri¬

angles, and also a new anti ready way for the exact finding

out of such lines and logaritlnnes as are not precisely to be

found in the canons.” But we are not told by what author:

probably it was by Briggs.

Besides the trouble attending Napier’s canon, in finding the

proportional parts, when used as a table of the logarithms of

common numbers, and which was in part remedied by the

fore-mentioned contrivances of Wright and Briggs, it was also

accompanied with another inconvenience, which arose from

the logarithms being sometimes + or additive, and sometimes

— or negative, and which required therefore the knowledge

of algebraic addition and subtraction. And this inconvenience

was occasioned, partly by making the logarithm of radius to be

0, and the sines to decrease, and partly by the compendious

manner in which the author had formed the table; making

the three columns of sines, cosines and tangents, to serve also

for the other three of cosecants, secants, and cotangents.

But this latter inconvenience was well remedied by John

Speidell, in his New Logarithms, first published in 1619,
VOL i. t
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which contained all the six columns, and in this order; sines,
cosines, tangents, cotangents, secants, cosecants: and they
were besides made all positive, by being taken the arithmetical
complements of Napier’s, that is, they were the remainders
left by subtracting each of these latter from 10000000. And
the former inconvenience was more effectually removed by the
said Speidell, in an additional table, given in the sixth impres¬
sion of the former work, in the year 1624. This was a table
of Napier’s logarithms for the round or integer numbers 1,2,
3, 4, 5, &c, to 1000, together with their differences and arith¬
metical complements; as also the halves of the said logarithms,
with their differences and arithmetical complements; which
halves consequently were the logarithms of the square roots
of the said numbers. These logarithms are however a little
varied in their form from Napier’s, namely, so as to increase

from 1, whose logarithm isO, instead of decreasing to 1, or ra¬
dius, whose logarithm was made 0 likewise; that is, Speidell’s
logarithm of any number n, is equal to Napier’s logarithm of
its reciprocal f: so that in this last table of Speidell’s, the
logarithm of 1 being O, the logarithm of 10 is 2302584, the
logarithm of 100 is twice as much, or 4605108, and that of
1000 thrice as much, or 6907753.

This table is now commonly called hyperbolic logarithms,
because the numbers express the areas between the asymptote
and curve of the hyperbola, those areas being limited by
ordinates parallel to the other asymptote, and the ordinates
decreasing in geometrical progression. But this is not a very
•proper method of denominating them, as such areas may ha
made to denote any system of logarithms whatever, as will be
shown more at large in the proper place.

In the year 1619, Robert Napier, son of the inventor of
logarithms, published a new edition of his late lather’s
“ Logarithmorum Canonis Descriptio,” together with the
promised “ Logarithmorum Canonis Constructio,” and other
miscellaneous pieces, written by his father and Mr. Briggs.—
Also one Bartholomew Vincent, a bookseller at Lugdunum,
nr Lyons, in Fratiee, printed there an exact copy of the same

<
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two works in one volume, in the year 1620; which was four

years before the logarithms were carried to France by Win¬

gate, who was therefore erroneously said to have first intro¬

duced them into that country. But we shall treat more

particularly of the contents of this -work, after having enu¬

merated the other writers on this sort of logarithms.

In 1618 or 1619, Benjamin Ursinus, mathematician to the

Elector of Brandenburg, published, at Cologn, his “ Cursus

Mathematicus,” in which is contained a copy of Napier’s

logarithms, with the addition of some tables of proportional

parts. And in 1624', he printed at the same place, his

“ Trigonometria,” with a table of natural sines and their

logarithms, of the Napierian kind and form, to every ten

seconds in the quadrant; which he had been at much pains

in computing.

In the same year 1624, logarithms, of nearly the same kind,

were also published, at Marpurg, by the celebrated John

Kepler, mathematician to the Emperor Ferdinand the Second,

under the title of “ Chilias Logarithmorum ad Totidem Nu-

meros Rotundos, prsemissa Demonstratione legitima Ortus

Logarithmorum eorumque Usus,” &c ; and the year follow¬

ing, a supplement to the same ; being applied to round or

integer numbers, and to such natural sines as nearly coincide

with them. These are exactly the same kind of logarithms

as Napier’s, being the same logarithms of the natural sines of

arcs, beginning from the quadrant, whose sine or radius is

10,000,000, the logarithm of which is made 0, and from thence

the sines decreasing by equal differences, down to 0, or the

beginning of the quadrant, while their logarithms increase to

infinity. So that the difference between this table and Na¬

pier’s, consists only in this, namely, that in Napier’s table the

arc of the quadrant is divided into equal parts, differing by

one minute each, and consequently their sines, to which the

logarithms are adapted, arc irrational or interminate numbers,

and only expressed by approximate decimals; whereas in

Kepler’s table, the radius is divided into equal parts, which

are considered as perfect and terminate sines, having equalY 2
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differences, and to which terminate sines the logarithms are

here adapted. By this means indeed the proportions lor in¬

termediate numbers and logarithms are easier made; but then

the corresponding arcs are not terminate, being irrational,

and only set down to an approximate degree. So that

Kepler’s table is more convenient as a table of the logarithms

of common numbers, and Napier’s as the logarithmic sines

of the arcs of the quadrant. In both tables, the logarithm of

the ratio of 10 to 1, is the same quantity, namely 23025852 ;

and as the radius, or greatest sine, is 10,000,000, whose loga¬

rithm is madeO, the logarithms of the decuple parts of it will

be found by adding 23025852 continually, or multiplying this

logarithm by 2, 3, 4, &c; and hence the logarithm of 1, tin*

first number, or smallest sine, in the table, is 161180959, or

7 times 2302 &c.

Besides the two columns, of the natural sines and their

logarithms, with the differences of the logarithms, this table

of Kepler’s consists also of three other columns; the first of

which contains the nearest arcs, belonging to those sines, ex¬

pressed in degrees, minutes and seconds; and the other two

express what parts of the radius each sine is equal to, namely,

the one of them in 24th parts of the radius, and minutes and

seconds of them; and the other in 60th parts of the radius,

and minutes of them. The following specimen is extracted

from the last page of the table, printed exactly as in the work
itself.
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Arcus
C irculi cum
difierentiis.

Sinus
seu numeri

absoluti.

Partes vice-

simae quart®.

Locarith mi
cum difierentiis*

101 SR

Partes sex*
agenariaj.

80. 3. 46 98500.00 23. 38. 24 1511.36 + 59. 6

20. 12 101.47

SO. 23. 58 98600.00 23. 39. 50 1409.89 + 59. 10

80. 44.

t)d

51 98700.00 23. 41. 17 1308.52 + 59. 13

21. 42 101.26

81. 6. 33 98800.00 23. 42. 43 12.07.26 59 . 17

53 101.17

81. 29. 26 98900.00 23. 44. 10 1106.09 + 59. 20
24. 6 101-06

81. 53. 32 99000.00 23. 45. 36 1005.03 + 59. 24

100.96

82. 18. 38 99100.00 23. 47. 2
904.07 + 59. 28

26. 28 100.85

82. 45. 6 99200.00 23. 48. 29 803.22 + 59. 31

54 100.76

83. 13. 0 99300.00 23. 49. 55 702.46 59. 35

30. 20 100.65

83. 43. 20 99400.00 23. 51. 22 601.81 59. 38
_ <2O ■10

84. 16. 0 99500.00 23. 52. 48 501.25 + 59. 42
36. 30 100.45

84. 52. 30 99600.00 23. 54. 14 400.80 59. 46
i i 9

85. 33. 39 99700.00 23. 55. 41 300.45 59. 49
48. 54 100.25

86. 22. 33 99800.00 23. 57. 7 200.20 59. 53
—1. 3 42

87. 26. 15 99900.00 23. 58. 34

1VAl.i J

100.05 59. 56
2. 33. 45 100.05

90. 0, 0 100000.00 24. 0. 0 000000.00 60. 0

To the table, Kepler prefixes a pretty considerable tract,

containing the construction of the logarithms, and a de¬

monstration of their properties and structure, in which he

considers logarithms, in the true and legitimate way, as the
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measures of ratios, as shall be shown more particularly here¬
after in the next tract, where the construction'of logarithms
is fully treated on.

Kepler also introduced the logarithmic calculus into his
Rudolpbine tables, published in 1627 ; and inserted in that
work several logarithmic tables; as, first a table similar to
that above described, except that the second, or column
of sines, or of absolute numbers, is omitted, and, instead of
it, another column is added, showing what part of the qua¬
drant each arc is equal to, namely the quotient, expressed in
integers and sexagesimal parts, arising from dividing the
whole quadrant by each given arc; 2dly, Napier’s table of
logarithmic sines, to every minute of the quadrant; also two
other smaller tables, adapted to the purposes of eclipses and
the latitudes of the planets. In this work also, Kepler gives
a succinct account of logarithms, with the description and use
of those that are contained in these tables, And here it is
that he mentions Justus Byrgius, as having had logarithms
before,Napier published them.

Besides the above, some few others published logarithms of

the same kind, about this time. But let us now return to

treat of the history of the common or Briggs’s logarithms, so

called because he first computed them, and first mentioned

them, and recommended them to Napier, instead of the first
kind bv him invented.

Mr. Hemy Briggs, not less esteemed for his great probity,
and other eminent virtues, than for his excellent skill in ma¬
thematics, was, at the time of the publication of Napier’s
logarithms, in 1614, professor of geometry in Gresham col¬
lege in London, having been appointed the first professor
after its institution : which appointment he held till January
1620, when he was chosen, also the first, Savilian professor
of geometry at Oxford, where he died January the 26th,
163£, aged about 74 years.

On the publication of Napier’s logarithms, Briggs imme¬

diately applied himself to the study and improvement of them.

In a letter to Mr. (afterwards Archbishop) Usher, dated the
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10th of March 1615, he writes, “ that he was wholly taken

up and employed about the noble invention of logarithms,

lately discovered.” And again, “ Napier lord of Markinston

hath set my head and hands at work with his new and admir¬

able logarithms: I hope to see him this summer, it it please

God; for I never saw a book which pleased me better, and

made me more wonder.” Thus we find that Briggs began

very early to compute logarithms: but these were not of the

same kind with Napier’s, in which the logarithm of the ratio

of 10 to 1 was 2.3025851 &c ; for, in Briggs’s first attempt he

made 1 the logarithm of that ratio; and, from the evidence

we have, it appears that he was the first person who formed

the idea of this change in the scale, which he presently and

liberally communicated, both to the public in his lectures, and

to lord Napier himself, who afterwards said that he also had

thought of the same thing; as appears by the following ex¬

tract, translated from the preface to Briggs’s “ Arithmetics

Logarithmica:” “ Wonder not (says he) that these logarithms
are different from those which the excellent baron of Marchi-

ston published in his Admirable Canon. For when I explained

the doctrine of them to my auditors at Gresham college in

London, I remarked that it would be much more convenient,

the logarithm of the sine total or radius being 0 (as in the

Canon Mirijicus), if the logarithm of the 10th part of the said

radius, namely, of 5° 44' 21", were 100000 &c; and con¬

cerning this I presently wrote to the author; also, as soon as

the season of the year and my public teaching would permit,

I went to Edinburgh, where being kindly received by him, I

staid a whole month. But when we began to converse about

tbe alteration of them, he said that be had formerly thought

of it, and wished it; but that he chose to publish those that

were already done, till such time as his leisure and health

would permit him to make others more convenient. And as

to the manner of the change, he thought it more expedient

that 0 should be made the logarithm of 1, and 100000 See the

logarithm of radius; which I could not but acknowledge was

much better. Therefore, rejecting those which I had before
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prepared, I proceeded, at his exhortation, to calculate these:

and the next summer I went again to Edinburgh, to shew him

the principle of them; and should have been glad to do the

same the third summer, if it had pleased God to spare him

so long.”

So that it is plain that Briggs was the inventor of the pre¬

sent scale of logarithms, in which 1 is the logarithm of the

ratio of 10 to 1, and 2 that of TOO to 1, &c; and that the share

which Napier had in them, was only advising Briggs to begin

at the lowest number 1, and make the logarithms, or artificial

numbers, as Napier had also called them, to increase with the

natural numbers, instead of decreasing ; which made no alter¬

ation in the figures that expressed Briggs’s logarithms, but

only in their affection or signs, changing them from negative

to positive; so that Briggs’s first loga¬
rithms to the numbers in the second

column of the annexed tablet, would

have been as in the first column; but after

they were changed, as they are here in

the third column; which is a change of

no essential difference, as the logarithm

of the ratio of 10 to 1, the radix of the

natural system of numbers, continues

the same; and a change in the logarithm

of that ratio being the only circumstance

that can essentially alter the system of

logarithms, the logarithm of 1 being 0. And the reason why

Briggs, after that interview, rejected what he had before

done, and began anew, was probably because he had adapted

his new logarithms to the approximate sines of arcs, instead

of to the round or integer numbers; and not from their being

logarithms of another system, as were those of Napier.

On Briggs’s return from Edinburgh to London the second

time, namely, in 1617, he printed the first thousand loga¬

rithms, to eight places of figures, besides the index, under

the title of “ Logarithmorum Chilias Prima.” Though these

seem not to have been published till after death of Napier-,
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which happened on the 3d of April 1618, as before said; for,

in the preface to them, Briggs says, “ Why these logarithms

differ from those set forth by their most illustrious inven¬

tor, of ever respectful memory, in his ‘ Canon Mirificus,’ it

is to be hoped his posthumous work will shortly make ap¬

pear.” And as Napier, after communication had with Briggs

on the subject of altering the scale of logarithms, had given

notice, both in Wright’s translation, and in his own “ llabdo-

logia,’’ printed in 1617, of his intention to alter the scale,

{though it appears very plainly that he never intended to

compute any more), without making any mention of the share

which Briggs had in the alteration, this gentleman modestly

gave the above hint. But not finding any regard paid to it

in the said posthumous work, published by lord Napier’s son

in 1619, where the alteration is again adverted to, but still

without any mention of Briggs; this gentleman thought he

could npt do less than state the grounds of that alteration

himself, as they are above extracted from his work published
in 1624.

Thus, upon the whole matter, it seems evident that Briggs,

whether he had thought of this improvement in the construc¬

tion of logarithms, of making 1 the logarithm of the ratio of

10 to 1, before lord Napier, or not (which is a secret that

could be known only to Napier himself), was the first person

who communicated the idea of such an improvement to the

world; and that he did this in his lectures to his auditors at

Gresham college in the year 1615, very soon after his peru¬

sal of Napier’s “ Canon Mirificus Logarithmorum,” published

in the year 1614. He also mentioned it to Napier, both by

letter in the same year, and on his first visit to him in Scotland

in the summer pf the year 1616, when Napier approved the '

idea, and said it had already occurred to himself, and that he

had determined to adopt it. It appears therefore, that it

would have been ipore candid in lord Napier to have told the

world, in the second edition of this book, that Mr. Briggs had

mentioned this improvement to him, and that he had thereby

been confirmed in the resolution he had already taken, before
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Mr. Briggs’s communication with him (if indeed that was the
fact), to adopt it in that his second edition, as being better
fitted to the decimal notation of arithmetic which was in ge¬
neral use. Such a declaration would have been but an act
of justice to Mr. Briggs; and the not having made it, cannot
but incline us to suspect that lord Napier was desirous that
the world should ascribe to him alone the merit of this very
useful improvement of the logarithms, as well as that of hav¬
ing originally invented them; though, if the having first com¬
municated an invention to the world be sufficient to entitle a
man to the honour of having first invented it, Mr. Briggs had
the better title to be called the first inventor of this happy
improvement of logarithms.

In 1620 , two years after the “ Chilias Prima” of Briggs
came out, Mr. Edmund Gunter published his “ Canon of Tri¬
angles,” which contains the artificial or logarithmic sines and
tangents, for every minute, to seven places of figures, besides
the index, the logarithm of radius being 10'0 &c. These
logarithms are of the kind last agreed upon by Napier and
Briggs, and they were the first tables of logarithmic sines and
tangents that were published of this sort. Gunter also, in

1623 , reprinted the same in his book “ De Sectorect Radifi,”
together with the “ Chilias Prima” of his old colleague Mr.
Briggs, he being professor of astronomy at Gresham college
when Briggs was professor of geometry there, Gunter having
been elected to that office the 6th of March 1019 , and enjoyed
it till his death, which happened on the 10th of December

1026 , about the forty-fifth year of his age. In 1623 , also,
Gunter applied these logarithms of numbers, sines, and tan¬
gents, to straight lines drawn on a ruler; with which, pro¬
portions in common numbers and trigonometry were resolved
by the mere application of a pair of compasses ; a method
founded on this property, that the logarithms of the terms of
equal ratios are equidifferent. This instrument, in the form
of a two-foot scale, is now in common use for navigation and
otlicr purposes, and is commonly called the Gunter. Pie also
greatly improved the sector for the same uses. Gunter was
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the first who used the word cosine for the sine of the comple¬

ment of an arc. He also introduced the use of arithmetical

complements into the logarithmical arithmetic, as is witnessed

by Briggs, chap. 15, Arith. Log. And it has been said, that

he started the idea of the logarithmic curve, which was so

called because the segments of its axis are the logarithms of

the corresponding ordinates.

The logarithmic lines were afterwards drawn in various

other ways. In 1627, they were drawn by Wingate on two

separate rulers sliding against each other, to save the use of

compasses in resolving proportions. They were also, in 1627,

applied to concentric circles, by Oughtred. Then in a spiral

form, by a Mr. Milburne of Yorkshire, about the year 1650.

And, lastly', in 1657, on the present sliding rule, by Seth

Partridge.

The discoveries relating to logarithms were carried to

France by' Mr. Edmund Wingate, but not first of all, as he

erroneously says in the preface to his book. lie published

at Paris, in 1624, two small tracts in the French language;

and afterwards at London, in 1626, an English edition of the

same, with improvements. In the first of these, lie teaches

the use of Gunter’s rules; and in the other, that of Briggs’s

logarithms, and the artificial sines and tangents. Here are

contained, also, tables of those logarithms, sines, and tan¬

gents, copied from Gunter. The edition of these logarithms

printed at London in 1635, and the former editions also I

suppose, has the units figures disposed along the tops of the

columns, and the tens down the margins, like our tables at

present; with the whole logarithm, which was only to fix

places of figures, in the angle of meeting: which is the first

instance that I have seen of this mode of arrangement.

But proceed we now to the larger structure of logarithms.

Briggs had continued from the beginning to labour with great

industry at the computation of those logarithms of which he

before published a short specimen in small numbers. And, in

1624, he produced his “ Arithmetica Logarithmica”—a stu¬

pendous work for so short a time !—containing the logarithms
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of 30000 natural numbers, to fourteen places of figures be¬
sides the index, namely, from 1 to 20000, and from 90000 to
100000; together with the differences of the logarithms. Some
writers say that there was anothercAf/iarf, namely, fromlOOOOO
to 101000; lint none of the copies that I have seen have more
than the 30000 above mentioned, and they were all regularly
terminated in the usual way with the word finis. The preface
to these logarithms contains, among other things, an account
of the alteration made in the scale by Napier and himself,
from which we. have, given an extract; and an earnest soli-
citation to others to undertake the computation for the inter¬
mediate numbers, offering to give instructions, and paper
read}’ ruled for that purpose, to any persons so inclined to
contribute to the completion of so valuable a work. In the
introduction, he gives also an ample treatise on the construc¬
tion and uses of these logarithms, which will be particularly
described hereafter.—By this invitation, and other means, he
had hopes of collecting materials for the logarithms of the
intermediate 70000 numbers, while lie should employ his own
labour more immediately on the canon of logarithmic sines
and tangents, and so carry on both works at once; as indeed
they w’ere both equally necessary, and he himself was now
pretty far advanced in years.

Soon after this however, Adrian Vlacq, or Flack, of Gouda
in Holland, completed the intermediate seventy chiliads, and
republished the “ Arithmetical Logarithmica” at that place,
in 1G27 and 1628, with those intermediate, numbers, making
in the whole the logarithms of all numbers to 100000, but
only to ten places of figures. To these was added a table of
artificial sines, tangents, and secants, to every minute of the
quadrant.

Briggs himself lived also to complete a table of logarithm!*
sines and tangents for the hundredth part of every degree, to
fourteen places of figures besides the index; together with a
table of natural sines for the same parts to fifteen places, and
the tangents and secants for the same to ten places; with the
construction of the whole. These tables were printed at
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Gouda, under the care of Adrian Vlacq, and mostly finished

off before 1631, though not published till 1633. But his death,

tvhich then happened, prevented him from completing the

application and uses of them. However, the performing of

this office, when dying, he recommended to his friend Henry

Gellibrand, who was then professor of astronomy in Gresham

college, having succeeded Mr. Gunter in that appointment.

Gellibrand accordingly added a preface, and the application

of the logarithms to plain and spherical trigonometry, &c ;

and the whole was printed at Gouda by the same printer, and

brought out in the same year, 1633, as the “ Trigonometria

Artilicialis” of Vlacq, who had the care of the press as above

said. This work was called “ Trigonometria Britannica

and besides the arcs in degrees and centesms of degrees, it

has another column, containing the minutes and seconds an¬

swering to the several centesms in the first column.

In 1633, as mentioned above, Vlacq printed at Gouda, in

Holland, his “ Trigonometria Artificialis; sive Magnus Canon

Triangulorum Logaritiimicus ad Decadas Secundorum Scru-

pulorum constructus.” This work contains the logarithmic

sines and tangents to ten places of figures, with their differ¬

ences, for every ten seconds in the quadrant. To them is also

added Briggs’s table of the first 20000 logarithms, but carried

only to ten places of figures besides the index, with their dif¬

ferences. The whole is preceded by a description of the

tables, and the application of them to plane and spherical

trigonometry, chiefly extracted from Briggs’s “ Trigono-

metria Britannica,” mentioned above.. . /

Gellibrand published also, in 1635, “ An Institution Trigo¬

nometrical!,” containing the logarithms of the first 10000

numbers, with the natural sines, tangents, and secants, and

the logarithmic sines and tangents, for degrees and minutes,

all to seven places of figures, besides the index ; as also other

tables proper for navigation; with the uses of the whole.

Gellibrand died the 9th of February 1636, in the 40th year

of his age, to the great loss of the mathematical world.

Besides the persons hitherto mentioned, who w'ere mostly
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computers of logarithms, many others have also published
tables of those artificial numbers, more or less complete, and
sometimes improved and varied in the manner and form of
them. We may here just advert to a few of the principal of
these.

In 1626, D. Henrion published, at Paris, a treatise concern¬
ing Brigg’s logarithms of common numbers, from 1 to 20000,
to eleven places of figures; with the sines and tangents to
eight places only.

In 1631, was printed, at London, by one George Miller, a
book containing Briggs’s logarithms, with their differences,
to ten places of figures besides the index, for all numbers to
100000 ; as also the logarithmic sines, tangents, and secants,
for every minute of the cpiadrant; with the explanation and
uses in English.

'The same year, 1631, Richard Norwood published his
ei Trigonometriain which we find Briggs’s logarithms for
all numbers to 10000, and for the sines, tangents, and secants,
to every minute, both to seven places besides the index.—In
the conclusion of the trigonometry, he complains of the un¬
fair practices of printing Vlacq’s book in 1627 or 1628, and
the book mentioned in the last article. His words are, “ Now,
whereas I have here, and in sundry places in this book, cited
Mr. Briggs his ‘ Arithmetica Logarithmica,’ (lest I may seem
to abuse the reader) you are to understand not the book put
forth about a month since in English, as a translation of his,
and with the same title ; being nothing like his, nor worthy
his name; but the book which himself put forth with this title
in Latin, being printed at London anno 1624. And here I
have just occasion to blame the ill dealing of these men, both
in the matter before mentioned, and in printing a second edi¬
tion of his { Arithmetica Logarithmica’ in Latin, whilst he
lived, against his mind and liking; and brought them over to
sell, when the first were unsold; so frustrating those additions
which Mr. Briggs intended in his second edition, and more¬
over leaving out some things that were in the first edition, of
special moment: a practice of very ill consequence, and
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tending to the great disparagement of such as take pains in
this kind.”

Francis Bonaventure Cavalerius published at Bologna, in
1632, his “ Directorium Generale Uranometricum,” in which
are tables of Briggs’s logarithms of sines, tangents, secants,
and versed sines, each to eight places, l or every second of the
first five minutes, for every five seconds from five to ten mi¬
nutes, for every ten seconds from ten to twenty minutes, for
every twenty seconds from twenty to thirty minutes, for every
thirty seconds from 30' to 1° 30', and for every minute in the
rest of the quadrant; which is the first table of logarithmic
versed sines that I know of. In this book are contained also
the logarithms of the first ten chiliads of natural numbers,
namely, from 1 to 10000, disposed in this manner: all the
twenties at top, and from 1 to 19 on the side, the logarithm
of the sum being in the square of meeting. In this work also,
I think Cavalerius gave the method of finding the area or
spherical surface contained by various arcs described on the
surface of a sphere; which had before been given by Albert
Girard, in his Algebra, printed in the year 1629.

Also, in the “ Trigonometria” of the same author, Cava¬
lerius, printed in 1643, besides the logarithms of numbers
from 1 to 1000, to eight places, with their differences, we find
both natural and logarithmic sines, tangents, and secants, the
former to seven, and the latter to eight places; namely, to
every 10" of the first 30 minutes, to every 30" from 30' to 1°;
and the same for their complements, or backwards through
the last degree of the quadrant; the intermediate S8“ being
to every minute only.

Mr. Nathaniel Roe, “ Pastor of Benacre in Suffolke,” also
reduced the logarithmic tables to a contracted form, in his
“ Tabulae Logarithmicce,” printed at London in 1633. Here
we have Briggs’s logarithms of numbers from 1 to 100000, to
eight places; the fifties placed at top, and from 1 to 50 on
the side; also the first four figures of the logarithms at top,
and the other four down the columns. They contain also the
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logarithmic sines and tangents to every 100th part of degrees,

to ten places.

Ludovieus Frobenius published at Hamburgh, in 1634, his

“ Clavis Universa Trigonometric:,” containing tables of

Briggs’s logarithms of numbers, from 1 to 2000; and of sines,

tangents, and secants, for every minute; both to seven places.

But the table of logarithms of common numbers was re-

duced to its most convenient form by John Newton, in his

“ Trigonometria Britannica,” printed at London in 1653,

having availed himself of both the improvements of Wingate

and Roe, namely, uniting Wingate’s disposition of the natural

numbers with Roe’s contracted arrangement of the logarithms,

the numbers being all disposed as in our best tables at pre¬

sent, namelv, the units along the top of the page, and the tens

down the left-hand side, also the first three figures of each

logarithm in the first column, and the remaining five figures

in the other columns, the logarithms being to eight places.

This work contains also the logarithmic sines and tangents,

to eight figures besides the index, for every 100th part of a

degree, with their differences, and for 1000th parts in the first

three degrees.—In the preface to this work, Newton takes

occasion, as Wingate and Norwood had done before, as well

as Briggs himself, to censure the unfair practices of some other

publishers of logarithms. Fie says, “ In the second part of

this institution, thou art presented with Mr. Gellibrand’s Tri¬

gonometric, faithfully translated from the Latin copv, that

which the author himself published under the title of ‘ Trigo¬

nometria Britannica,’ and not that which Vlacq tire Dutchman

styles ‘ Trigonometria Artificialis,’ from whose corrupt and

imperfect copy that seems to be translated which is amongst

us generally known by the name of ‘ Gellibrand’s Trigono¬

metry ;’ but those who either knew him, or have perused his-

writings, can testify that he was no admirer of the old sexa¬

genary way of working; nay, that he did preferre the decimal

way before it, as he hath abundantly testified in all the ex¬

amples of this his Trigonometry, which differs from that other
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which VJacq hath published, and that which hath hitherto
borne his name in English, as in the form, so likewise in the
matter of it; for in the two last-mentioned editions, there is
something left out in the second chapter of plain triangles,
the third chapter wholly omitted, and a part of the third in
the spherical; but in this edition nothing: something we have
added to both, by way of explanation and demonstration.”

In 1670, John Caramuel published his “ Mathesis Nova,”
in which are contained 1000 logarithms both of Napier’s and
Briggs’s form, as also 1000 of what he calls the Perfect Loga¬
rithms, namely, the same as those which Briggs first thought
of, which differ from the last only in this, that the one in¬
creases while the other decreases, the radix or logarithm of
the ratio of 10 to 1 being the same in both.

The books of logarithms have since become very numer¬
ous, but the logarithms are mostly of that sort invented by
Briggs, and which are now in common use. Of these, the
most noted for their accuracy or usefulness, besides the works
above mentioned, are Vlacq’s small volume of tables, parti¬
cularly that edition printed at Lyons, in 1670; also tables
printed at the same place in 1760 ; but most especially the
tables of Slier win and Gardiner, particularly my own im¬
proved editions of them. Of these, Sherwin’s “ Mathematical
Tables,” in 8vo, formed, till lately, the most complete col¬
lection of any, containing, besides the logarithms of all num¬
bers to 101000, the sines, tangents, secants, and versed sines,
both natural and logarithmic, to every minute of the quadrant,
though not conveniently arranged. The first edition was in
1706; but the third edition, in 1742, which was revised by
Gardiner, is esteemed the most correct of any, though con¬
taining many thousands of errors in the final figures, as well
as all the former editions: as to the last or fifth edition, in
1771, it is so erroneously printed that no dependance can be
placed in it, being the most inaccurate book of tables I ever
knew; I have a list of several thousand errors which I have
corrected in it, as well as in Gardiner’s octavo edition, and in
Sherwin’s edition.

VOL. I. Z
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Gardiner also printed at London, in 1742, a quarto volume
of “ Tables of Logarithms, for all numbers from 1 to 102100,
and for the sines and tangents to every ten seconds of each
degree in the quadrant; as also, for the sines of the first 72
minutes to every single second: with other useful and neces¬
sary tables;” namely a table of Logistical Logarithms, and
three smaller tables to be used for finding the logarithms of
numbers to twenty places of figures. Of these tables of
Gardiner, only a small number was printed, and that by sub¬
scription; and they have always been held in great estimation
for their accuracy and usefulness.

An edition of Gardiner’s collection was. also elegantly
printed at Avignon in France, in 1770, with some additions,
namely, the sines and tangents for every single second in the
first four degrees, and a small table of hyperbolic logarithms,
copied from a treatise on Fluxions by the late ingenious Mr.
Thomas Simpson : but this is not quite so correct as Gardi¬
ner’s own edition. The tables in all these books are to seven
places of figures.

Lastly, my own Mathematical Tables, being the most ac¬
curate and best arranged set of logarithmic tables ever before
given; preceded also by a large and critical history of Tri¬
gonometry and Logarithms, and terminating with a copious
list of the errors discovered in the principal other tables of
this kind.

There have also lately appeared the following accurate and
elegant books of logarithms; viz. 1. “ Logarithmic Tables,”
by the late Mr. Michael Taylor, a pupil of mine, and author
of “ The Sexagesimal Table.” His work consists of three
tables ; 1st, The Logarithms of Common Numbers from 1 to
1260, each to 8 places of figures; 2dly, The Logarithms of
all Numbers from 1 to 101000, each to 7 places; 3dly, The
Logarithmic Sines aud Tangents to every Second of theQua-
drant, also to 7 places of figures: a work that must prove
highly ur.eful to such persons as may be employed in very nice
and accurate calculations, such as astronomical tables, &c.
The author dying when the tables were nearly all printed off,
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the Rev. Dr. Maskelyne, astronomer royal, supplied a pre¬

face, containing an account of the work, with excellent pre¬

cepts for the explanation and use of the tables: the whole

very accurately and elegantly printed on large 4to, 1792.

2. “ Tables Portatives de Logarithmes, publiees a Londres

par Gardiner,” &c. This work is most beautifully printed in

a neat portable 8vo volume, and contains all the tables in

Gardiner’s 4to volume, with some additions and improve¬

ments, and with a considerable degree of accuracy. Printed

at Paris, by Didot, 1793. On this, as well as several other

occasions, it is but justice to remark the extraordinary spirit

and elegance with which the learned men, and the artisans of

the French nation, undertake and execute works of merit.

3. A second edition of the “ Tables Portatives de Loga¬

rithmes,” &c. printed at Paris with the stereotypes, of solid

pages, in 8vo, 1795, by Didot. This edition is greatly en¬

larged, by an extension of the old tables, and many new ones;

among which are the logarithm sines and tangents to every

ten thousandth part of the quadrant, viz. in which the qua¬

drant is first divided into 100 equal parts, and each of these

into 100 parts again.

4. Other more extensive tables, by Borda and Delambre,

were published at Paris in 1801. Besides the usual table of

the logarithms of common numbers, and a large introduction,

on the nature and construction of them, this work contains

very extensive tables of decimal trigonometry, arranged in a

new and curious way, and containing the log. sines, tangents,

and secants, of the quadrant, divided first into 100 degrees,

each degree into 100 minutes, and each minute into 100
seconds.

The logarithmic canon serves to find readily the logarithm

of any assigned number; and we are told by Dr. Wallis, ir«

the second volume of his Mathematical Works, that an anti-

logaritlnnic canon, or one to find as readily the number cor¬

responding to every logarithm, was begun, he thinks, by

Hi nriot the algebraist, w ho died in 1621, and completed by

Walter Warner, the editor of Harriot’s works, before 1640;
2 2
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which ingenious performance, it seems, was lost, for want of
encouragement to publish it.

A small specimen of such numbers was published in the
Philosophical Transactions for the year 1714, by Mr. Long
of Oxford ; but it was not till 1742 that a complete antiloga-
rithmic canon was published by Mr. James Dodson, wherein
he has computed the numbers corresponding to every loga¬
rithm from 1 to 100000, for 11 places of figures.

TRACT XXL

THE CONSTRUCTION OF LOGARITHMS, kc.

Having, in the last Tract, described the several kinds of

logarithms, their rise and invention, their nature and proper¬
ties, and given some account of the principal early cultivators
of them, with the chief collections that have been published
of such tables; proceed we now to deliver a more particular
account of the ideas and methods employed by each author,
and the peculiar inodes of construction made use of by them.
And first, of the great inventor himself, Lord Napier.

Napier's Construction of Logarithms.

The inventor of logarithms did not adapt them to the series,
of natural numbers 1, 2, 3, 4, 5, &c,as it was not his principal
idea to extend them to all arithmetical operations in general;
but he confined his labours to that circumstance which first
suggested the necessity of the invention, and adapted his lo¬
garithms to the approximate numbers which express the na¬
tural sines of every minute in the quadrant, as they had been
set down by former writers on trigonometry.

The same restricted idea was pursued through his method
of constructing the logarithms. As the lines of the sines of
all arcs are parts of the radius, or sine of the quadrant, which
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was therefore called the sinus totus, or whole sine, he conceived
the line of the radius to be described, or run over, by a point
movingalong it in suchamanner,that in equal portions of time
it generated, or cut off, parts in a decreasing geometrical pro¬
gression, leaving the several remainders, or sines, in geome¬
trical progression also; while another point, in an indefinite
line, described equal parts of it in the same equal portions of
time; so that the respective sums of these, or tile whole line
generated, were always the arithmeticals or logarithms of
these sines. Thus, az is the given radius on which
all the sines are to betaken, and a&c the indefinite S| P es -Off¬
line containing the logarithms; these lines being “
each generated by the motion of points, beginning - 1 -1
at a, a. Now, at the end of the 1 st, 2 d, 3d, &c, . 2 -2
moments, or equal small portions of time, the mov- ,,
ing points being found at the places marked 1,2, -3
3, &c; then za, zl, z2, z3, &c, will be the series of ’5
natural sines, and AO, or 0, Al, a2, a3, &c, will be -®.
their logarithms; supposing the point which gene- 1 & c .
rates az to move every where with a velocity de- " s
creasing in proportion to its distance from z, namely > e -7
its velocity in the points 0, 1, 2, 3, &c, to be re- &c
spectively as the distances z 0, zl , z2, z3, &c, while
the velocity of the point generating the logarithmic line a&c
remains constantly the same as at first in the point a or 0.

Hitherto the author had not fully limited his system or scale
of logarithms, having only supposed one condition or limita¬
tion, namely, that the logarithm of the radius az should beO:
whereas two independent conditions, no matter what, are
necessary to limit the scale or system of logarithms. It did
not occur to him that it was proper to form the other limit,
by affixing some particular value to an assigned number, or
part of the radius : but, as another condition was necessary,
he assumed this for it, name])’, that the two generating points
should begin to move at a and A with equal velocities; or that
the increments «1 and Al, described in the first moments,
should be equal; as he thought this circumstance would be
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attended with some little ease in the computation. And this

is the reason that, in his table, the natural sines and their lo¬

garithms, at the complete quadrant, have equal differences ;

and this is also the reason why his scale of logarithms happens

accidentally to agree with what have since been called the hy¬

perbolic logarithms, which have numeral differences equal to

those of their natural numbers, at the beginning; except only

that these latter increase with the natural numbers, and his

on the contrary decrease; the logarithm of the ratio ol 10 to

1 being the same in both, namely, 2-30258509.
And here, by the way, it may be observed, that Napier’s

manner of conceiving the generation of the lines of the natural
numbers, and their logarithms, by the motion of points, is very
similar to the manner in which Newton afterwards considered
the generation of magnitudes in his doctrine of fluxions; and
it is also remarkable, that, in art. 2, of the “ Habitudines
Logarithmorum et suorum naturalium numerorum invicem,”
in the appendix to the “ Constructio Logarithmorum,” Napier
speaks of the velocities of the increments or decrements of
the logarithms, in the same ivay as Newrton does of his fluxions,
namely, where he shows that those velocities, or fluxions, are
inversely as the sines or natural numbers of the logarithms;
which is a necessary consequence of the nature of the gene¬
ration of those lines as described above ; with this alteration,
however, that now the radius as must be considered as gene¬
rated by an equable motion of the point, and the indefinite
line A&c by a motion increasing in the same ratio as the other
before decreased ; which is a supposition that Napier must
have had in view when he stated that relation of the fluxions.

Having thus limited his system, Napier proceeds, in the

posthumous work of 1619, to explain his construction of the

logarithmic canon; and this he effects in various ways, but

chiefly by generating, in a very easy manner, a series of pro¬

portional numbers, and their aritbmeticals or logarithms; and

then finding, by proportion, the logarithms to the natural

sines, from those of the nearest numbers among the original

proportionals.
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After describing the necessary cautions he made use of, to
preserve a sufficient degree of accuracy, in so long and com¬
plex a process of calculation; such as annexing several
ciphers, as decimals separated by a point, to his primitive
numbers, and rejecting the decimals thence resulting after
the operations were completed ; setting the numbers down to
the nearest unit in the last figure; and teaching the arithme¬
tical processes of adding, subtracting, multiplying, and divid¬
ing the limits, between which certain unknown numbers must
lie, so as to obtain the limits between which the results must
also fall; I say, after describing such particulars, in order toi
clear and smooth the way, he enters on the great field of
calculation itself. Beginning at radius 10000000, he first
constructs several descending geometrical series, but of such
a nature, that they are all quickly formed by an easy conti¬
nual subtraction, and a division by 2, or by 10, or 1-00, &c,
which is done by only removing the decimal point so many
places towards the left-hand, as there are ciphers in the divi¬
sor. He constructs three tables of such series: The first of
these consists of 100 numbers, in the proportion of radius to
radius minus 1, or of 10000000 to 9999999; all which are
found by only subtracting from each its 10000000th part,
which part is also found by only removing each figure seven
places lower: the last of these 100 proportionals is found to
be 9999900-0004950.

The 2d table contains
50 numbers, which are
in the continual propor¬
tion of the first to thelast
in the first table, namely,
of 10000000-0000000to
9999900 0004950, or
nearly the proportion of 100000 to 99999; these therefore
are found by only removing the figures of each number 5
places lower, and subtracting them from the same number ;
the last of these he finds to be 9995001-222927. And a spe¬
cimen of these two tables is here annexed.

No. First Table. Second Table.
1 10000000.0000000 10000000.000000
2 9999999.0000000 9999900.000000
3 9999998.0000001 9999800.001000
4 9999997.0000003 9999700.003000

See. &c till the 100th &c to the 50th
30 term, which will be term.

100 9999900.0004950 9995001.222927
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The 3d table consists of 69 columns, and each column of
21 numbers or terms, which terms, in every column, are in
the continual proportion of 10000 to 9995, that is, nearly as
the first is to the last in the 2d table; and as 10000 exceeds
9995 4*.y the 2Q00th part, the terms in every column will be
constructed by dividing each upper number by 2, removing
the figures of the quotient 3 places lower, and then subtract¬
ing them; and in this way it is proper to construct only
the first column of 21 numbers, the last of which will be.
9900473 -5780 : but the 1st, 2d, 3d, &c, numbers, in all the
columns, are in the continual proportion of 100 to 99, or
nearly the proportion of the first to the last in the first co¬
lumn ; and therefore these will be found by removing the
figures of each preceding number two places lower, and sub¬
tracting them, for the like number in the next column. A
specimen of this 3d table is as here below.

The Third Table.

Terms 1st Column. 2d Column. 3d Column. &c till the 69th Col.

i 10000000.0000 9900000.0000 9801000.0000 8$c for 5048858.8900
2 9995000.0000 9895050.0000 9796099.5000 the 4th 5046334.4605

3 9990002.5000 9890102.4750 9791201.4503 5th, 6th, 5043811.2932

4 99S5007.4987 9885157.4237 9786305.8495 7th, &c 5041289.3879

A 9980014.9950 9880214.8451 9781412.6967 col. till 50387G8.7435

&c &c till &c &c the last &c

21 9900473 5780 9801468.8423 9703454.1539 or 4998609.4034

Thus he had, in this 3d table, interposed between the radius
and its half, 68 numbers in the continual proportion of 100 to
99 ; and interposed between every two of these, 20 numbers
in the proportion of 10000 to 9995: and again, in the 2d
table, between 10000000 and 9995000, the two first of the 3d
table, he had 50 numbers in the proportion of 100000 to
99999; and lastly, in the 1st table, between 10000000 and
9999900, or the two first in the 2d table, 100 numbers in the
proportion of 10000000 to 9999999 ; that is in all, about 1600
proportionals; all found in the most simple manner, by little
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more than easy subtractions; which proportionals nearly coin¬
cide with all the natural sines from 90* down to 30°.

To obtain the logarithms of all those proportionals, he de¬

monstrates several properties and relations of the numbers

and logarithms, and illustrates the manner of applying them.

The principal of these properties areas follow : 1st, that the

logarithm of any sine is greater than the difference between

that sine and the radius, but less than the said difference when

increased in the proportion of the sine to radius* ; and 2dly,

that the difference between the logarithms of two sines, is less

than the difference of the sines increased in the proportion of

the less sine to radius, but greater than the said difference of

the sines increased in the proportion of the greater sine to

radius f.

Hence, by the 1st theorem, the logarithm of 10000000, the

radius or first term in the first table, being 0, the logarithm

of 9999999, the 2d term, will be between 1 and T0000001,

and will therefore be equal to T00000005 very nearly?; and
this will be also the common difference of all the terms or

proportionals in the first table; therefore, by the continual

addition of this logarithm, there will be obtained the loga¬

rithms of all these 100 proportionals; consequently? 100 times

the said first logarithm, or the last of the above sums, will

* By this first theorem, t being radius, the logarithm of the sine s is between

r—s and -—-r; and therefore, when s differs but little from r, the logarithm of ts

will be nearly equal to the arithmetical mean between tire limits

r—s and -—-r; but still nearer to (r—s)*/— or- A/">thegeometricalmeanS S J

between the said limits.

By this second theorem, the difference between the logarithms of the two
S— s S —s

sines S and j, lying between the limits - r and —— r, will, when those siness S

differ but little, be nearly equal to or — * ■' V* ^ —- r, their arithmetic,1L
2Sr

cal mean ; or nearly -~r, the geometrical mean ; or nearly = -— -2 r> by sub-V bj S + s
stituting in the last denominator, \ (S + i) for ^Sj, to which it is nearly equal.
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give 100'000005, for tlie logarithm of 9999000'0()019.50, the

last of the said 100 proportions.

Then, by the 2d theorem, it easily appears, that '0004950

is the difference between the logarithms of 9999900'0004D50

and 9999900, the last term of the first table, and the 2d term

of the second table; this then being added to the last loga¬

rithm, gives 100'0005000 for the logarithm of the said 2d

term, as also the common difference of the logarithms of all

the proportions in the second table; and therefore, by conti¬

nually adding it, there will be generated the logarithms of all

these proportionals in the second table ; the last of which is

5000'025, answering to 999500T222927, the last term of that
table.

Again, by the 2d theorem, the difference between the loga¬

rithms of this last proportional of the second table, and the

2d term in the first column of the third table, is found to be

I•223538'?; which being added to the last logarithm, gives

5001'24S53S7 for the logarithm of 9995000, the said 2d term

of the third table, as also the common difference of the loga¬

rithms of all the proportionals in the first column of that

table; and that this, therefore, being continually added, gives

all the logarithms of that first column, the last of which is

100024'97077, the logarithm of 9900473'5780, the last term
of the said column.

Finally, by the 2d theorem again, the difference between

the logarithms of this last number and 9900000, the 1st term

in the second column, is 478'3502; which being added to the

last logarithm, gives 100503'3210 for the logarithm of the

said 1st term in the second column, as well as the common

difference of the logarithms of all the numbers on the same

line in every line of the table, namely, of all the 1st terms,

of all the 2d, of all the 3d, of all the 4th, &c, terms, in all the

columns; and which, therefore, being continually added to

the logarithms in the first column, will give the corresponding

logarithms in all the other columns.

And thus is completed what the author calls the radical

table, in which he retains only one decimal place in the loga-
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ritbms (or artificials, as lie always calls them in his tract on

the construction), and four in the naturals. A specimen of
the table is as here follows:

Radical Table.

Terms 1st Column. 2d Colu d n. 69th Column.

“ Naturals. Artificals Naturals. Artifie. Naturals. Artificials-
i 10000000.0000 0 9900000.0000 100503.3 5048858.8900 6834225.8
2 9995000.0000 5001.2 9895050.0000 105504.6 5046333.4605 6S39227.1
3 9990002.5000 10002.5 9890102.4750 110505.S 5043S11.2932 6844228.3
4 9985007.4931 15003.7 9885157.4237 115507.1 5041289.3879 6349229.6
5 9980014.9950 20005.0 9880214.8451 120508.3 5038768.7435 6854230.S

&c See till &c &c &c &c &c
21 9900473.57SO 100025.0 9301468.8423 200528.2 499S609.4034 6934250.8

Having thus, in the most easy manner, completed the radi¬

cal table, by little more than mere addition and subtraction,

both for the natural numbers and logarithms; the logarithmic

sines were easily deduced from it by means of the 2d theorem,

namely, taking the sum and difference of each tabular sine

and the nearest number in the radical table, annexing 7 ci¬

phers to the difference, dividing the result by the sum, then

half the quotient gives the difference between the logarithms

of the said numbers, namely, between the tabular sine and

radical number; consequently, adding or subtracting this

difference, to or from the given logarithm of the radical num¬

ber, there is obtained the logarithmic sine required. And thus

the logarithms of till the sines, from radius to the half of it,

or from 00° to 30°, were perfected.

Next, for determining the sines of the remaining 30 de¬

grees, he delivers two methods. In the first of these he pro¬

ceeds in this manner : Observing that the logarithm of the

ratio of 2 to 1, or of half the radius, is 6931469'22, of 4 to 1

is the double of this, of 8 to I is triple of it, &c; that of 10

to 1 is 23025S42.34, of 20 to 1 is the sum of the logarithms

of 2 and 10; and so on, by composition for the logarithms of

the ratios between 1 and 40, 80, 100, 200, &c, to 10000000;

he multiplies any given sine, for an arc less than 30 degrees,
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by sonic of these numbers, till be finds the product nearly

equal to one of the tabular numbers; then by means of this

and the second theorem, the logarithm of this product is

found ; to which adding the logarithm that answers to the

multiple above mentioned, the sum is the logarithm sought.

But the other method is still much easier, and is derived from

this property, which he demonstrates, namely, as half radius

is to the sine of half an arc, so is the cosine of the said hah

arc, to the sine of the whole arc ; or as radius : sine of an

arc :: cosine of the arc : sine of double arc; hence the loga¬

rithmic sine of an arc is found, by adding together the loga¬

rithms of half radius and of the sine of the double arc, and

then subtracting; the logarithmic cosine from the sum.

And thus the remainder of the sines, from 30° down to 0,

are easily obtained. But in this latter way, the logarithmic

sines for full one half of the quadrant, or from 0 to 45 degrees,

he observes, may be derived ; the other half having already

been made by the general method of the radical table, by one

easy division and addition or subtraction for each.

We have dwelt the longer on this work of the inventor of

logarithms, because I have not seen, in any author, an account

of his method of constructing his table, though it is perfectly

different from every other method used by the later compu¬

ters, and indeed almost peculiar to his species of logarithms.

The whole of this work manifests great ingenuity in the de¬

signer, as well as much accuracy. But notwithstanding the

caution he took to obtain his logarithms true to the nearest

unit in the last figure set down in the tables, by extending

the numbers in the computations to several decimals, and

other means; he had been disappointed of that end, either

by the inaccuracy of his assistant computers or transcribers,

or through some other cause; as the logarithms in the table

are commonly very inaccurate. It, is remarkable too, that in

this tract on the construction of the logarithms, Lord Napier

never calls them logarithms, but every where artificials , as

opposed in idea to the natural numbers: and this notion, of

natural and artificial numbers, I take to have been his first
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idea of this matter, and that he altered the word artificials to
logarithms in his first book, on the description of them, when
lie printed it, in the year 1614, and that lie would also have
altered the word every where in this posthumous work, if lie
had lived to print it: for in the two or three pages of appen¬
dix, annexed to the work by his son, from Napier’s papers,
he again always calls them logarithms. This appendix relates
to the change of the logarithms to that scale in which 1 is the
logarithm of the ratio of 10 to 1, the logarithm of 1, with or
without ciphers, being 0; and it appears to have been written
after Briggs communicated to him his idea of that change.

Napier here in this appendix also briefly describes some
methods, by which this new species of logarithms may be
constructed. Having supposed 0 to be the logarithm of 1,
and 1, with any number of ciphers, as 10000000000, the
logarithm of 10; he directs to divide this logarithm of 10,
and the successive quotients, ten times by 5 ; by which divi¬
sions there will be obtained these other ten logarithms, viz.
•2000000000, 400000000, 80000000, 16000000, 3200000,
640000, 128000, 25600, 5120, 1024: then this last iogar'thm,
and its quotients, being divided ten times by 2, will give these
other ten logarithms, 512, 256, 128, 64, 32, 16, 8,4, 2, 1.
And the numbers answering to these twenty logarithms, we
are directed to find in this manner ; namely, extract the 5th
root of 10, with ciphers, then the 5th root of that root, and
so on, for ten continual extractions of the 5th root; so shall
these ten roots be the natural numbers belonging to the first
ten logarithms, above found in continually dividing by 5 :
next, out of the last 5th root we are to extract the square
root, then the square root of this last root, and so on, for ten
successive extractions of the square root; so shall these last
ten roots be the natural numbers corresponding to the loga¬
rithms or quotients arising from the last ten divisions by the
number 2. And from these twenty logarithms, 1,2, 4, 8, 16,
&c, and their natural numbers, the author observes that other
logarithms and their numbers may be formed, namely, by
adding the logarithms, and multiplying their corresponding
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numbers. It is evident that this process would generate ra¬
ther an anti logarithmic canon, such as Dodson’s, than the
table of Briggs; and that the method would also be very
laborious, since, besides the very troublesome original ex¬
tractions of the 5th roots, all the numbers would be very
large, by the multiplication of which the successive secondary
natural numbers are to be found.

Our author next mentions another method of deriving a
few of the primitive numbers and their logarithms, namely,
by taking continually geometrical means, first between 10
and 1, then between 10 and this mean, and again between 10
and the last mean, and so on; and taking the arithmetical
means between their corresponding logarithms. He then
lays down various relations between numbers and their loga¬
rithms; such as, that the products and quotients of numbers'
answer to the sums and differences of their logarithms, and
that the powers and roots of numbers answer to the products
and quotients of the logarithms by the index of the power or
root, &c ; as also that, of any two numbers whose logarithms
are given, if each number be raised to the power denoted by
the logarithm of the other, the two results will be equal. He
then delivers another method of making the logarithms to a
few of the prime integer numbers, which is well adapted for
constructing the common table of logarithms. This method
easily follows from what has been said above; and it depends
on this property, that the logarithm of any number in this
scale, is 1 less than the number of places or figures contained
in that power of the given number whose exponent is
10000000000, or the logarithm of 10, at least as to integer
numbers, for they really differ by a fraction, as is shown by
Mr. Briggs in his illustrations of these properties, printed at
the end of this appendix to the construction of logarithms.
We shall here just notice one more of these relations, as the
manner in which it is expressed is exactly similar to that of
fluxions and fluents, and it is this: Of any two numbers, as
the greater is to the less, so is the velocity of the increment
or decrement of the logarithms at the less, to the velocity of
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the increment or decrement of the logarithms at the greater :

that is, in our modern notation, as X : Y :: y to x, where x

and y are'the fluxions of the logarithms of X and Y.

Kepler's Construction of Logarithms.

The logarithms of Briggs and Kepler were both printed

the same year, 1624; but as the latter are of the same sort

as Napier’s, we may first consider this author’s construction

of them, before proceeding to that of Briggs’s.

We have already, in the last Tract, described the nature

and form of Kepler’s logarithms; showing that they are of

the same kind as Napier’s, but only a little varied in the form

of the table. It may also be added, that, in general, the ideas

which these two masters had on this subject, were of the same

nature; only they were more fully and methodically laid

down by Kepler, who expanded, and delivered in a regular

science, the hints that were given by the illustrious inventor.
The foundation and nature of their methods of construction

are also the same, but only a little varied in their modes of

applying them. Kepler here, first of any, treats of loga¬

rithms in the true and genuine way of the measures of ratios,

or proportions*', as he calls them, and that in a very full and
scientific manner : and this method of his was afterwards fol¬

lowed and abridged by Mercator, Halley, Cotes, and others,

as we shall see in the proper places. Kepler first erects a

regular and purely mathematical system of proportions, and

the measures of proportions, treated at considerable length

in a number of propositions, which are fully and chastety

demonstrated by genuine mathematical reasoning, and illu¬

strated by examples in numbers. This part contains and

demonstrates both the nature and the principles of the struc-

* Kepler almost always uses the term proportion instead of ratio, which we

shall also do in the account of his work, as well as conform rn expressions and
notations to his oth^r peculiarities. It may also be here remarked, that I observe
the same practice in describing the works of other authors, the better to convey
the idea of their several methods and style. And this may serve to account for
some seeming inequalities in the language of this history.
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ture of logarithms. And in the second part the author applies

those principles in the actual construction of his table, which

contains only 1000 numbers, and their logarithms, in the form

as we before described : and in this part he indicates the va¬

rious contrivances made use of in deducing the logarithms of

proportions one from another, after a few of the leading ones

had been first formed, by the general and more remote prin¬

ciples. He uses the name logarithms, given them by the in¬

ventor, being the most proper, as expressing the very nature

and essence of those artificial numbers, and containing as it

were a definition in the very name of them ; but without

taking any notice of the inventor, or of the origin of those
useful numbers.

As this tract is very curious and important in itself, and is

besides very rare and little known, instead of a particular de¬

scription only, we shall here give a brief translation of both

the parts, omitting only the demonstrations of the proposi¬

tions, and some rather long illustrations of them. The book

is dedicated to Philip, landgrave of Hesse, but is without

either preface or introduction, and commences immediately

with the subject of the first part, which is intitled “ The De¬

monstration of the Structure of Logarithms and the con¬
tents of it are as follow.

Postulate 1. That all proportions that are equal among

themselves, by whatever variety of couplets of terms they

may be denoted, are measured or expressed by the same

quantity.

Axiom I. If there be any number of quantities of the same

kind, the proportion of the extremes is understood to be com¬

posed of all the proportions of every adjacent couplet of

terms, from the first to the last.

1 Proposition. The mean proportional between two terms,

divides the proportion of those terms into two equal pro¬

portions.

Axiom 2. Of any number of quantities regularly increas¬

ing, the means divide the proportion of the extremes into one

proportion more than the number of the means.
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Postulate 2. That the proportion between any two terms

is divisible into any number of parts, until those parts become

An example of this section is then inserted in a small table, in dividing the

proportion which is between 10 and 7 into 1073741824 equal parts, by as many
mean proportionals wanting one, namely, by taking the mean proportional be¬
tween 10 and7, then the mean between 10 and this mean, and the mean between

10 and the last, and so on for 30 means, or 30 extractions of the square root,
the last or 30th of which roots is 99999999966782056900 ; and the 30 power of

5, which is 1073741824, shows into how many parts the proportion between 10
and 7, or between 1000 &c, and 700 See, is divided by 1073741824 means, each
of which parts is equal to the proportion between 1000 &c, and the 30th mean
999&C, that is, the proportion between lOOOScc, and 999&C, is the 1073741824th

part of the proportion between 10 and 7. Then by assuming the small differ¬
ence 00000000033217943100, for the measure of the very small element of the

proportion oflO to 7, or for the measure of the proportion of lOOO&c, to 999&C,
or for the logarithm of this last term, and multiplying it by 1073741824, the
number of parts, the pVoduct gives 35667.49481.37222.14400, for the logarithm
of the less term 7 or 700 &c.

Postulate 3. That the extremely small quantity or element

of a proportion, may be measured or denoted by any quan¬

tity whatever ; as for instance, by the difference of the terms
of that element.

2 Prvposition. Of three continued proportionals, the dif¬

ference of the two first has to the difference of the two latter,

the same proportion which the first term has to the 2d, or the
2d to the 3d.

3 Prop. Of any continued proportionals, the greatest terms

have the greatest difference, and the least terms the least.

4 Prop. In any continued proportionals, if the difference

of the greatest terms he made the measure of the proportion

between them, the difference of any other couplet will be less

than the true measure of their proportion.

5 Prop. In continued proportionals, if the difference of the

greatest terms he made the measure of their proportion, then

the measure of the proportion of the greatest to any other

term will he greater than their difference.

6 Prop. In continued proportionals, if the difference of the

greatest term and any one of the less, taken not immediately

less than any proposed quantity,

VOL. i. A A
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next to it, be made the measure of their proportion, then the

proportion which is between the greatest and any other term

greater than the one before taken, will be less than the differ¬

ence of those terms ; but the proportion which is between

the greatest term, and any one less than that first taken, will

be greater than their difference.

I Prop. Of any quantities placed according to the order of

their magnitudes, if any two successive proportions be equal,

the three successive terms which constitute them, will be con¬

tinued proportionals.

8 Prop. Of any quantities placed in the order of their mag¬

nitudes, if the intermediates lying between any two terms be

not among the mean proportionals which can be interposed

between the said two terms, then such intermediates do not

divide the proportion of those two terms into commensurable

proportions.

Besides the demonstrations, as usual, several definitions are here given; as of
commensurable proportions, See.

9 Prop. When two expressible lengths are not to one an¬

other as two figurate numbers of the same species, such as

two squares, or two cubes, there cannot fall between them

other expressible lengths, which shall be mean proportionals,

and as many in number as that species requires, namely, one

in the squares, two in the cubes, three in the biquadrats, &c.

10 Prop. Of any expressible quantities, following in the

order of their magnitudes, if the two extremes be not in the

proportion of two square numbers, or two cubes, or two other

powers of the same kind, none of the intermediates divide the

proportion into commensurables.

II Prop. All the proportions, taken in order, which are

between expressible terms that are in arithmetical propor¬

tion, are incommensurable to one another. As between 8,

13, 18.

12 Prop. Of any quantities placed in the order of their

magnitude, if the difference of the greatest terms be made

the measure of their proportion, then the difference between

any two others will be less than the measure of their propor-
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tion ; and if the difference of the two least terms be made the

measure of their proportion, then the differences of the rest

will be greater than the measure of the proportion between
1 their terms.

Corol. If the measure of the proportion between the greatest

exceed their difference, then the proportion of this measure

to the said difference, will be less than that of a following

measure to the difference of its terms. Because proportionals
have the same ratio.

13 Prop. If three quantities follow one another in the order

of magnitude, the proportion of the two least will be con¬

tained in the proportion of the extremes, a less number of
times than the difference of the two least is contained in the

difference of the extremes: And, on the contrary, the pro¬

portion of the two greatest will be contained in the proportion

of the extremes, oftener than the difference of the former is

contained in that of the latter.

Corol. Hence, if the difference of the two greater be equal

to the difference of the two less terms, the proportion between

the two greater will be less than the proportion between the
two less.

14 Prop. Of three equidifferent quantities, taken in order,

the proportion between the extremes is more than double the

proportion between the two greater terms.

Corol. Hence it follows, that half the proportion of the

extremes is greater than the proportion of the two greatest

terms, but less than the proportion of the two least.

15 Prop. If two quantities constitute a proportion, and

each quantity be lessened by half the greater, the remainders

will constitute a proportion greater than double the former.

16 Prop. The aliquot parts of incommensurable proportions
are incommensurable to each other.

17 Prop. If one thousand numbers follow one another in

the natural order, beginning at 1000, and differing all by

unity, viz. 1000, 999, 99S, 997, &c; and the proportion be¬

tween the two greatest 1000, 999, by continual bisection, be

cut into parts-that are smaller thau the excess of thepropor-A a 2
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tion between the next two999, 998, over the said proportion
between the two greatest 1000, 999 ; and then for the mea¬
sure of that small element of the proportion between 1000
and 999, there be taken the difference of 1000 and that
mean proportional which is the other term of the element.
Again, if the proportion between 1000 and 998 be likewise
cut into double the number of parts which the former pro¬
portion, between 1000 and 999, was cut into; and then for
the measure of the small element in this division, be taken the
difference of its terms, of which the greater is 1000. And, in
the same manner, if the proportion of 1000 to the following
numbers, as 997, &c, by continual bisection, be cut into
particles of such magnitude, as may be between and -J of
the element arising from the section of the first proportion
between 1000 and 999, the measure of each element will be
given from the difference of its terms. Then, this being
done, the measure of any one of the 1000 proportions will
be composed of as many measures of its element, as there are
of those elements in the said divided proportion. And all
these measures, for all the proportions, will be sufficiently
exact for the nicest calculations.

AH these sections and measures of proportions are performed in the manner
of that described at postulate 2, and the operation is abundantly explained by
numerical calculations.

18 Prop. The proportion of an}- number, to the first term
1000, being known; there will also he known the proportion
of the rest of the numbers in the same continued proportion,
to the said first term.

So, from the known proportion between 1000 and 900,
there is also known the prop, of 1000 to 810, and to 729;

And from 1000 to 800, also 1000 to 640, and to 512;
And from 1000 to 700, also 1000 to 490, and to 343 ;
And from 1000 to 600, also 1000 to 360, and to 216 ;
And from 1000 to 500, also 1000 to 250, and to 125.

Corol. Hence arises the precept for squaring, cubing, kc ;
as also for extracting the square root, cube root, &c. For it
will be, as the greatest number of the chiliad, as a denomi-
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nator, is to the number proposed as a numerator, so is this

traction to the square of it, and so is this square to the cube
of it.

19 Prop. The proportion of a number to the first, or 1000,

being known ; if there be two other numbers in the same pro¬

portion to each other, then the proportion of one of these to

1000 being known, there will also be known the proportion
of the other to the same 1000.

Coral. 1 . Hence, from the 15 proportions mentioned in

prop. 18, will be known 120 others below 1000, to the same
1000.

For so many are the proportions, equal to some one or other of the said 15,
that are among the other integer numbers which are less than 1000.

Corol. 2. Hence arises the method of treating the Rule-of-

Threc, when 1000 is one of the given terms.

For this is effected by adding to, or subtracting from, each other, the measures
of the two proportions of 1000 to each of the other two given numbers, accord¬
ing as 1000 is, or is not, the first term in the Rule-of-Thrce.

20 Prop . When four numbers arc proportional, the first to

the second as the third to the fourth, and the proportions of

1000 to each of the three former are known, there will also

be known the proportion of 1000 to the fourth number.

Corol. 1 . By this means other chiliads are added to thp
former.

Corol. 2. Hence arises the method of performing the Rule-

of-Three, when 1000 is not one of the terms. Namely from

the sum of the measures of the proportions of 1000 to the

second and third, take that of 1000 to the first, and the re¬

mainder is the measure of the proportion of 1000 to the fourth
term.

Definition. The measure of the proportion between 1000

and any less number, as before described, and expressed by

a number, is set opposite to that less number in the chiliad,

and is called its logarithm, that is, the number (apjS/xo/)

indicating the proportion (Aoyov) which 1000 bears to that

number, to which the logarithm is annexed.

21 Prop. If the first or greatest number be made the rad’e.
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of a circle, or sinus totus; every less number, considered as

the cosine of some arc, has a logarithm greater than the versed

sine of that arc, but less than the difference between the ra¬

dius and secant of the arc; except only in the term next after

the radius, or greatest term, the logarithm of which, by the

hypothesis, is made equal to the versed sine.
That is, if CD be made the logarithm of AC, or the mea¬

sure of the proportion of AC to AD ; then the measure of
the proportion of AB to AD, that is the logarithm of AF>,
will be greater than BD, but less than EF. And this is the
same as Napier’s first rule in page 345. A BCD

22 Prop. The same things being supposed ; the sum of the

versed sine and excess of the secant over the radius, is greater

than double the logarithm of the cosine of an arc.

Corol. The. log. cosine is less than the arithmetical mean
between the versed sine and the excess of the secant.

Precept 1. Any sine being found in the canon of sines, and
its defect below radius to the excess of the secant above ra¬

dius, then shall the logarithm of the sine be less than half that

sum, but greater than the said defect or coversed sine.
Let there be the sine 99970.1490 of an arc :
Its defect below radius is 29.8510 the covers* and less than the log. sine :
Add the excess of the secant 29*8599

Sum 59.7109
its half or 29.8555 greater than the logarithm.

Therefore the log. is between 29.8510
and 29.8555

Precept 2. The logarithm of the sine being found, there

will also be found nearly the logarithm of the round or inte¬

ger number, which is next less than the sine with a fraction,

by adding that fractional excess to the logarithm of the said
sine.

Thus, the logarithm of the sine 99970.149 is found to be about 29.854; if now
the logarithm of the round number 99970.000be required, add 149, the fractional
part of the sine, to its logarithm, observing tiie point, thus,

29.854
149

the sum 30.003 is the log. of the round number 99970.000nearly.
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23 Prop. Of three-equidifferent quantities, the measure of

the proportion between the two greater terms, with the mea¬

sure of the proportion between the two less terms, will con¬

stitute a proportion, which will be greater than the proportion

of the two greater terms, but less than the proportion of the
two least.

Thus if AH, AC, AD be three quantities having the
equal differences BC, CD ; and if the measure of the J
proportion of AD, AC, be, cd, and that of AC, AB be be;
then the proportion of cd to cb will be greater than the
proportion of AC to AD, but less than the proportion
of AB to AC.

24 Prop. The said proportion between the two measures

is less than half the proportion between the extreme terms.

That is, the proportion between be, cd, is less than half the

proportion between ab, ad.
Corol. Since therefore the arithmetical mean divides the

proportion into unequal parts, of which the one is greater,

and the other less, than half the whole; if it be inquired what

proportion is between these proportions, the answer is, that
it is a little less than the said half.

An Example of finding nearly the limits, greater and less, to

the measure of any proposed proportion.

It being known that the measure of the proportion between 1000 and 900 is
10536.05, required the measure of the proportion 900 to 800, where the terms
1000, 900, 800, have eqqal differences. Therefore as 9 to 10, so 10536.05 to
11706.72, which is less than 11778.30 the measure of the proportion 9 to 8.
Again, as the mean proportional between 8 and 10 (which is 8.9442719) is to
10, so 10536.05toll779.66, which is greater than the measure of the proportion
between 9 and 8.

Axiom. Every number denotes an expressible quantity.

25 Prop. If the 1000 numbers, differing by 1, follow one

another in the natural order; and there be taken any two ad¬

jacent numbers, as the terms of some proportion; the measure

of this proportion will be to the measure of the proportion

between the two greatest terms of the chiliad, in a proportion

greater than that which the greatest term 1000 bears to the
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greater of the two terms first taken, but less than the pro¬

portion of 1000 to the less of the said two selected terms.

So, of the 1000 numbers, taking any two successive terms, as .501 and 500, the
logarithm of the former being 69114.92, and of the latter 69314.72, the differ¬
ence of which is 199.80. Therefore, by the definition, the measure of the pro¬
portion between 501 and 500 is 199.80. In like manner, because the logarithm
of the greatest term 1000 is 0, and of the next 999 is 100.05, the difference of
these logarithms, and the measure of the proportion between 1000 and 999, is

100.05. Couple now the greatest term 1000 with each of the selected terms
501 and 500; couple also the measure 199.80 with the measure 100.05; so shall
the proportion between 199.80 and 100.05, be greater than the proportion be¬

tween 1000 and 501, but less than the proportion between 1000 and 500.

Corol. 1. Any number below the first 1000 being proposed,

as also its logarithm, the differences of any logarithms ante,

cedent to that proposed, towards the beginning of the chiliad,

are to the first logarithm (viz. that which is assigned to 999)

in a greater proportion than 1000 to the number proposed;

but of those which follow towards the last logarithm, they

are to the same in a less proportion.

Corol. 2. By this means, the places of the chiliad may easily

be filled up, which have not yet had logarithms adapted to

them by the former propositions.

26 Prop. The difference of two logarithms, adapted to two

adjacent numbers, is to the difference of these numbers, in

a proportion greater than 1000 bears to the greater of those

numbers, but less than that of 1000 to the less of the two

numbers.

This 26th prop, is the same as Napier’s second rule, at page 345.

27 Prop. Having given two adjacent numbers, of the 1000

natural numbers, with their logarithmic indices, or the mea¬

sures of the proportions which those absolute or round num¬

bers constitute with 1000, the greatest; the increments, or

differences, of these logarithms, will be to the logarithm of

the small element of the proportions, as the secants of the

arcs whose cosines are the two absolute numbers, is to the

greatest number, or the radius of the circle; so that, however,

of the said two secants, the less will have to the radius a less

proportion than the proposed difference has to the first of all,
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but the greater will have a greater proportion, and so also will

the mean proportional between the said secants have a greater

proportion.

Thus if BC, CD be equal, also h<l the logarithm of AB,
and cd tlie logarithm of AC; then the proportion of ic to
cd will be greater than the proportion of AG to. AD, but
less than that of AF to AD, and also less than that of the
mean proportional between AF and AG to AD.

i c a

Corol. 1. The same obtains also when the two terms differ,

not only by the unit of the small element, but by another

unit, which may be ten fold, a hundred fold, or a thousand
fold of that.

Corol. 2. Hence the differences will be obtained sufficiently

exact, especially when the absolute numbers are pretty large,

by taking the arithmetical mean between two small secants,

or (if j'ou will be at the labour) by taking the geometrical

mean between two larger secants, and then by continually

adding the differences, the logarithms will be produced.

Corol. 3. Precept. Divide the radius by each term of the

assigned proportion, and the arithmetical mean (or still nearer

the geometrical mean) between the quotients, will be the re¬

quired increment; which being added to the logarithm of the

greater term, will give the logarithm of the less term.

Example.

Let there be given the logarithm of 700, viz. 35667.494S, to find the log- to 699,
Here radius divided by 700 gives 142S571 &c.

and divided by 699 gives 1430672 &c.
the arithmetical mean is 142.962

which added to 35667.4948

gives the logarithm to 699 35810.4568

Corol. 4. Precept for the logarithms of sines.

The increment between the logarithms of two sines, is thus

found: find the geometrical mean between the cosecants, and

divide it by the difference of the sines, the quotient will be

the difference of the logarithms.

II CD
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Example.
0° T sine 2909 cosec. 343774GS2
0 2 sine 581S cosec. 171887319

dif. 2909, geom. mean 242S nearly.

The quotient S0000 exceeds the required increment of the logarithms, because
the secants are here so large.

Appendix. Nearly in the same manner it may be shown,
that the second differences are in the duplicate proportion of
the first, and the third in the duplicate of the second. Thus,
for instance, in the beginning of the logarithms, the first dif¬
ference is 100.00000, viz. equal to the difference of the num¬
bers 100000.00000 and 99900.00000; the second, or difference
of the differences, 10000; the third 20. Again, after arriving
at the number of 50000.00000, the logarithms have for a dif¬
ference 200.00000, which is to the first difference, as the
number 100000.00000 to 50000.00000; but the second dif¬
ference is 40000, in which 10000 is contained 4 times; and
the third 328, in which 20 is contained 16 times. But since
in treating of new matters we labour under the want of proper
words, therefore lest, we should become too obscure, the de¬
monstration is omitted untried.

28 Prop. No number expresses exactly the measure of the

proportion, between two of the 1000 numbers, constituted by

the foregoing method.
29 Prop. If the measures of all proportions be expressed

by numbers or logarithms; all proportions will not have as¬

signed to them their due portion of measure, to the utmost

accuracy.
30 Prop. If to the number 1000, the greatest of the chiliad,

be referred others that are greater than it, and the logarithm

of 1000 be made 0, the logarithms belonging to those greater

numbers will be negative.

This concludes the first or scientific part of the work, the

principles of which Kepler applies, in the second part, to the

actual construction of the first 1000 logarithms, which con¬

struction is pretty minutely described. This part is iutilled
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“ A very compendious method of constructing the Chiliad of
Logarithms;” and it is not improperly so called, the method
being very concise and easy. The fundamental principles
are briefly these : That at the beginning of the logarithms,
their increments or differences are equal to those of the na¬
tural numbers: that the natural numbers may be considered
as the decreasing cosines of increasing arcs : and that the se-
cants of those arcs at the beginning have the same differences
as the cosines, and therefore the same differences as the loga¬
rithms. Then, since the secants are the reciprocals of the
cosines, by these principles and the third corollary to the 27 th
proposition, he establishes the following method of constitut¬
ing the 100 first or smallest logarithms to the 100 largest
numbers, 1000, 999, 998, 997, &c, to 900. viz. Divide the
radius 1000, increased with seven ciphers, by each of these
numbers separately, disposing the quotients in a table, and
they will be the secants of those arcs which have the divisors
for their cosines; continuing the division to the 8th figure,
as it is in that place only that the arithmetical and geometri¬
cal means differ. Then by adding successively the arithme¬
tical means between every two successive secants, the sums
will be the series of logarithms. Or, by adding continually
every two secants, the successive sums will be the series of
the double logarithms.

Besides the 100 logarithms, thus constructed, the author
constitutes two others by continual bisection, or extractions
of the square root, after the manner described in the second
postulate. And first he finds the Logarithm which measures
the proportion between 100000.00 and 97656.25, which latter
term is the third proportional to 1024 and 1000, each with two
ciphers; and this is effected by means of twenty-four continual
extractions of the square root, determining the greatest term
of each of twenty-four classes of mean proportionals; then
the difference between the greatest of these means and the
first or -whole number 1000, with ciphers, being as often
doubled, there arises 2371.6526 for the logarithm sought,
which made negative is the logarithm of 1024. Secondly;
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the like process is repeated for the proportion between the
numbers 1000 and 500, from which arises 69314.7193 for the
logarithm of 500 ; which he also calls the logarithm of dupli¬
cation, being the measure of the proportion of 2 to 1.

Then from the foregoing he derives all the other logarithms
in the chiliad, beginning with those of the prime numbers 1,
2, 3, 5, 7, &c, in the first 100. And first, since 1024, 512,
256, 128, 64, 32, 16, 8, 4, 2, 1, arc all in the continued pro¬
portion of 1000 to 500, therefore the proportion of 1024 to
1 is decuple of the proportion of 1000 to 500, and conse¬
quently the logarithm of 1 would be decuple of the logarithm
of 500, if 0 were taken as the logarithm of 1024; but since the
logarithm of 1024 is applied negatively, the logarithm of 1
must be diminished by as much: diminishing therefore 10
times the log. of 500, which is 693147.1928, by 2371.6526,
the remainder 690775.5422 is the logarithm of 1, or of 100.00,
which is set down in the table.

And because 1, 10, 100, 1000, are
continued proportionals, tb'erefore
the proportion of 1000 to 1 is triple
of the proportion of 1000 to 100, and
consequently of the logarithm of 1
is to be set for the logarithm of 100,
viz. 230258.5141, and this is also the
logarithm of decuplication, or of the
proportion of 10 to 1. And hence,
multiplying this logarithm of 100 successively by 2, 3, 4, 5, 6,
and 7, there arise the logarithms to the numbers in the de¬
cuple proportion, as in the margin.

Also if the logarithm of dupli¬
cation, or of the proportion of 2
to 1, be taken from the logarithm
of 1, there will remain the loga¬
rithm of 2; and from the logarithm
of 2 taking the logarithm of 10,
there remains the logarithm of
the proportion of 5 to 1 ; which

Nos. Logarithms.

100 230358.5141

JO 460517.0282

1 690775.5422

.1 921034.0563

.01 1151292.5703

.001 1381551.0844

0001 1611809.5985

Log. of 1 690775.5422
of 2 to 1 69314.7193

log. of 2 621460.8229
log. of 10 460517.0281

of 5 to 1 160943.7948

log. of 5 529831.7474
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taken from the logarithm of 1, there remains the logarithm

of 5. See the margin.

For the logarithms of other prime numbers he has recourse

to those of some of the first or greatest century of numbers,

before found, viz. of 999, 998, 997, &c. And first, taking
960, whose logarithm is 4082.2001 ; then by adding to this

logarithm the logarithm of duplication, there will arise the

several logarithms of all these numbers, which are in dupli¬

cate proportion continued from 960, namely 480, 240, 120,
60, 30, 15. Hence the logarithm of 30 taken from the loga¬

rithm of 10, leaves the logarithm of the proportion of 3 to 1 ;

which taken from the logarithm of 1, leaves the logarithm of
3, viz. 580914.3106. And the double of this diminished by

the logarithm of 1 , gives 471053.0790 for the logarithm of 9.

Next, from the logarithm of 990, or 9 x 10 x 11, which is

1005.0331, he finds the logarithm of 11, namely, subtracting

the sum of the logarithms of 9 and 10 from the sum of the

logarithm of 990 and double the logarithm of 1, there remains

450986.0106 the logarithm of 11.

Again, from the logarithm of 980, or 2 x 10x7x7,

which is 2020.2711, he finds 496184.522S for the logarithm
of 7.

And from 5129.3303 the logarithm of 950, or 5 x 10 x 19,

he finds 396331.6392 for the logarithm of 19.

In like manner the logarithm

to 998 or 4 X 13 x 19, gives the logarithm of 13 ;

to 969 or 3 x 17 X 19, gives the logarithm of 17 ;

to 986 or 2 x 17 X 29, gives the logarithm of 29 ;

to 966 or 6 X 7 x 23, gives the logarithm of 23 ;
to 930 or 3 x 10 x 31, gives the logarithm of 31.

And so on for all the primes below 100, and for many of

the primes in the other centuries up to 900. After which, he

directs to find the logarithms of all numbers composed of

these, by the proper addition and subtraction of their loga¬

rithms, namely, in finding the logarithm of the product of two

numbers, from the sum of the logarithms of the two factors

take the logarithm of 1, the remainder is the logarithm of the
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product. In this way lie shows that the logarithms of all
numbers under 500 may be derived, except those of the fol¬
lowing 36 numbers, namely, 127, 149, 167, 173, 179, 211,
223, 251, 257, 263, 269, 271, 277, 281, 283, 293, 337, 347,
349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419,
421,'431, 433, 439, 443, 449. - Also, besides the composite
numbers between 500 and 900, made up of the products of
some numbers whose logarithms have been before determined,
there will be 59 primes not composed of them; which, with
the 36 above mentioned, make 95 numbers in all not composed
of the products of any before them, and the logarithms of
which he directs to be derived in this manner; namely, by
considering the differences of the logarithms of the numbers
interspersed among them; then by that method by which were
constituted the differences of the logarithms of the smallest
100 numbers in a continued series, we are to proceed here in
the discontinued series, that is, by prop. 27, corol. 3, and
especially by the appendix to it, if it be rightly used, whence
those differences will be very easily supplied.

This closes the second part, or the actual construction of
the logarithms; after which follows the table itself, which has
been before described, pa. 323. Before dismissing Kepler’s
work however, it may not be improper in this place to take
notice of an erroneous property laid down by him in the ap¬
pendix to the 27th prop, just now referred to ; both because
it is an error in principle, tending to vitiate the practice, and
because it serves to show that Kepler was not acquainted with
the true nature of the orders of differences of the logarithms,
notwithstanding what he says above with respect to the con¬
struction of them by means of their several orders of differ¬
ences, and that consequently he has no legal claim to any
share in the discovery of the differential method, known at
that time to Briggs, and it would seem to him alone, it being
published in his logarithms in the same year, 1624, as Kepler’s
book, together with the true nature of the logarithmic orders
of differences, as we shall presently see in the following ac¬
count of his works. Now this error of Kepler’s, here alluded
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to, is in that expression where he says the third differences

are in the duplicate ratio of the second differences, like as the

second differences are in the duplicate ratio of the first; or,

in other words, that the third differences are as the squares

of the second differences, as tvell as the second differences as

the squares of the first; or that the third differences are as

the fourth powers of the first differences : Whereas in truth

the third differences are only as the cubes of the first differ¬

ences. Kepler seems to have been led into this error by a

mistake in his numbers, viz. when he says in that appendix,

that “ the third difference is 328, in which 20 is contained 16

times for when the numbers are accurately computed, the

third difference comes out only 161, in which therefore 20 is

contained only 8 times, which is the cube of 2, the number
of times the one first difference contains the other. It would

hence seem that Kepler had hastily drawn the above errone¬

ous principle from this one numerical example, or little more,

false as it is: for had he made the trial in many instances,

though erroneously computed, theycould not easily have been

so uniformly so, as to afford the same false conclusion in all

cases. And therefore from hence, and what he says at the

conclusion of that appendix, it may be inferred, that he either

never attempted the demonstration of the property in ques¬

tion, or else that finding himself embarrassed with it, and

unable to accomplish it, he therefore dispatched it in the am¬

biguous manner in which it appears.

But it may easily be shown, not only that the third differ¬

ences of the logarithms at different places, are as the cubes

of the first differences; but, in general, that the numbers in

any one and the same order of differences, at different places,

are as that power of the numbers in the first differences, w'hose

index is the same as that of the order; or that the second,

third, fourth, &c differences, are as the second, third, fourth,

&c powers of the first differences. For the several orders of

differences, when the absolute numbers differ by indefinitely

small parts, are as the several orders of fluxions of the loga¬

rithms ; but if x be anv number, then — is the fluxion of
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the logarithm of .r, to the modulus to, and the second fluxion,

or the fluxion of this fluxion, is — ■ ^ , since, x is constant;

ion 2mi l 2.3 mx*
and the third, fourth, &c fluxions, are ———,-——, &c;

that is, the first, second, third, fourth, fifth, sixth, &c orders

of fluxions, are equal to the modulus m multiplied into each

of these terms,
X lx- 1.2x 3 1.2.3* 4 1.2.3.4* 5 1.2.3.4.5* 6

,r ’ x z ’ .v 3 ’ a’ 4 ’ .r 5 5 x 6

where it is evident, that the fluxion of any order is as that

power of the first fluxion, whose index is the same as the

number of the order. And these quantities would actually

be the several terms of the differences themselves, if the dif¬

ferences of the numbers w'ere indefinitely small. But they

vary the more from them, as the differences of the absolute

numbers differ from x, or as the said constant numerical dif¬

ference 1 approaches towards the value of x the number

itself. However, on the whole, the several orders vary

proportionably, so as still sensibly to preserve the same ana-

logy, namely, that two nth differences are in proportion as

the ?;th powers of their respective first differences.

Of Briggs's Construction of his Logarithms.

Nearly according to the methods described in p. 349, 3/>0,

Mr. Briggs constructed the logarithms of the prime numbers,

as appears from his relation of this business in the “Arithmetica

Logarithmica,” printed in 1624, where he details, in an ample

manner, the whole construction and use of his logarithms.

The work is divided into 32 chapters or sections. In the first

of these, logarithms in a general sense are defined, and some

properties of them illustrated. In the second chapter he re¬

marks, that it is most convenient to make 0 the logarithm of

1; and on that supposition he exemplifies these following

properties, namely, that the logarithms of all numbers are

either the indices of powers, or proportional to them; that

the sum of the logarithms of two or more factors, is the loga¬

rithm of their product; and that the difference of the loga--
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rithms of two numbers, is the logarithm of their quotient. In

the third section he states the other assumption, which is ne¬

cessary to limit his system of logarithms, namely, making 1

the logarithm of 10, as that which produces the most conve¬

nient form of logarithms: He hence also takes occasion to

show that the powers of 10, namely 100, 1000, &c, are the

only numbers which can have rational logarithms. The fourth

section treats of the characteristic; by which name he distin¬

guishes the integral, or first part, of a logarithm towards the

left hand, which expresses one less than the number of inte¬

ger places or figures, in the number belonging to that loga¬

rithm, or how far the first figure of this number is removed

from the place of units; namely, that 0 is the characteristic

of the logarithms of all numbers from 1 to 10; and 1 the

characteristic of all those from 10 to 100; and 2 that of those

from 100 to 1000; and so on.

He begins the fifth chapter with remarking, that his loga¬

rithms maj 7 chiefly* he constructed by the two methods which

were mentioned by Napier, as above related, and for the sake

of which, he here premises several lemmata, concerning the

powers of numbers and their indices, and how many places of

figures are in the products of numbers, observing that the

product of two numbers will consist of as many figures as

there arc; in both factors, unless perhaps the product of the

first figures in each factor he expressed by one figure only,

which often happens, and then commonly there will be one

figure in the product less than in the two factors; as also that,

of any two of the terms, in a series of geometricals, the re¬

sults will he equal by raising each term to the power denoted

by the index of the other; or any number raised to the power

denoted by the logarithm of the other, will he equal to this

latter number raised to the power denoted by the logarithm

of the former; and consequently if the one number be 10,

whose logarithm is 1 with any number ot ciphers, then any

number raised to the power whose index is 1000 &c, or the

logarithm of 10, will he equal to 10 raised to the power whose

index is the logarithm of that number ; that is, the logarithm
VOL. i. b B
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of any number in this scale, where L is the logarithm of 10,

is the index of that power of 10 which is equal to the given

number. But the index of any integral power of 10, is one

less than the number of places in that power; consequently

the logarithm of any other number, which is no integral power

of 10, is not quite one less than the number of places in that

power of the given number whose index is 1000 &c, or the

logarithm of 10.

Find therefore the 10th, or 100th, or 1000th &c, power of

any number, as suppose 2, with the number of figures in such

power; then shall that number of figures always exceed the

logarithm of 2, though the excess will be constantly less
than 1.
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An example of this
process is here given
in the margin; where
the 1st column con¬
tains the several
powers of 2, the 2d
their corresponding
indices, and the 3d
contains the number
of places in the
powers in the first
column ; and of these
numbers in the third
column, such as are
on the lines of those
indices that consist

of 1 with ciphers,
are continual ap¬
proximations to the
logarithm of 2, be¬
ing always too great
by less than 1 in the
last figure, that lo¬
garithm being
3010299956639S &c.

And here, since the
exact powers of 2
are not required, but
only the number of
figures they consist
of, as shown by the
third column, only a
few of the first fi¬

gures of the powers
in the first column
are retained, those
being sufficient to
determine the num-

Towers
of -2 Indices. No- of Places or

logs.

2 i i
4 2 i
16 4 2
256 8 3

1024 10 4 log. of 2
10486 20 7 log. of 4
10995 40 13 log. of 16
12089 80 25 log. of 256

12676 100 31 log. of 2
16069 200 6 l log. of 4
25823 400 121 log. 16
66680 800 241 log. 256

10715 1000 302 log. 2
11481 2000 603 log. 4
13182 4000 1205 log. 16
17377 8000 2409 log.256

19950 10000 3011 log. 2
39803 20000 6021 log. 4
15843 4 0000 12012 log. 16

j 25099 80000 24083 log. 256

99900 100000 30103 log. 2
99801 200000 60206 log. 4
99601 400000 120412 jx>
99204 800000 240824 P

99006 1000000 301030
98023 2000000 602060
96085 4000000 1204120
92323 8000000 2408240

90498 10000000 3010300
81899 20000000 6020600
6707 5 400(10000 12041200
44990 80000000 24082400

36846 100000000 30103000
13577 200000000 60206000
18433 400000000 120411999
33977 800000000 240823997

46129 1000000000 | 301029996
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ber of places in them; and the multiplications in raising these

powers are performed in a contracted way, so as to have the

fifth or last figure in them true to the nearest unit. Indeed

these multiplications might be performed in the same man¬

ner, retaining only the first three figures, and those to the

nearest unit in the third place; which would make this a

very easy way indeed of finding the logarithms of a few prime
numbers.

It may also he remarked, that those several powers, whose

indices are 1 with ciphers, are raised by thrice squaring from

the former powers, and multiplying the first by the third of

these squares; making also the corresponding doublings and

additions of their indices: thus, the square of 2 is 4, and the

square of 4 is 1G, the square of 16 is 256 , and 256 multiplied

by 4 is 1024; in like manner, the double of 1 is 2, the double

of 3 is 4, the double of 4 is S, and 8 added to 2 makes 10.

And the same for all the following; powers and indices. The

numbers in the third column, which show how many places

are in the corresponding powers in the first column, are pro¬

duced in the very same way as those in the second column,

namely, by three duplications and one addition; only ob¬

serving to subtract 1 when the product of the first figures

are expressed by one figure ; or when the first figures

exceed those of the number or power next above them. It

may further be observed, that, like as the first number in

each quaternion, or space of four lines or numbers, in the

third column, approximates to the logarithm of 2, the first

number in the first quaternion of the first column; so the

second, third, and fourth terms of each quaternion in the

third column, approximate to the logarithm of 4, 16, and

256, the second, third, and fourth numbers in the first qua¬

ternion in the first column. And further, by cutting off one,

two, three, &c, figures, as the index or integral part, from

the said logarithms of 2, 4, 16, and 256, the first, second,

third, and fourth numbers in the first quaternion of the first

column, the remaining figures will be the decimal part of the

logarithms of the corresponding first, second, third, and

fourth numbers in the following second, third, fourth, <kc,
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quaternions : the reason of which is, that any number of any

quaternion in the first column, is the tenth power of the cor¬

responding term in the next preceding quaternion. So that

the third column contains the logarithms of all the numbers in

the first column : a property which, if Dr. Newton had been

aware of, he could not easily have committed such gross mis¬

takes as are found in a table of his, similar to that above given,

in which most of the numbers in the latter quaternions are

totally erroneous; and his confused and imperfect account of
this method would induce one to believe that he did not well

understand it.

In the sixth chapter our illustrious author begins to treat of

the other general method of finding the logarithms of prime

numbers, which he thinks is an easier way than the former,

at least when the logarithm is required to a great many places

of figures. This method consists in taking a great number

of continued geometrical means between 1 and the given

number whose logarithm is required; that is, first extracting

the square root of the given number, then the root of the

first root, the root of the second root, the root of the third

root, and so on till the last root shall exceed 1 by a very small

decimal, greater or less according to the intended number of

places to be in the logarithm sought: then finding the loga¬

rithm of this small number, by methods described below, he

doubles it as often as he made extractions of the square root,

or, which is the same thing, he multiplies it by such power

of 2 as is denoted by the said number of extractions, and the

result is the required logarithm of the given number; as is

evident from the nature of logarithms. The rule to know

how far to continue this extraction of roots is, that the num¬

ber of decimal places in the last root, be double the number

of true places required to be found in the logarithm, and that

the first half of them be ciphers; the integer being 1: the

reason of which is, that then the significant figures in the de¬

cimal, after the ciphers, are directly proportional to those in

the corresponding logarithms; such figures in the natural

number being the half of those in the nest preceding nuin-
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ber, like as the logarithm of the last number is the half of the

preceding logarithm. Therefore, any one such small num¬

ber, with its logarithm, being once found, by the continual

extractions of square roots out of a given number, as 10, and

corresponding bisections of its given logarithm 1; the loga¬

rithm for any other such small number, derived by like con¬

tinual extractions from another given number, whose loga¬

rithm is sought, will be found by one single proportion:

which logarithm is then to be doubled according to the

number of extractions, or mul¬

tiplied at once by the like

power of 2, for the logarithm

of the number proposed. To
find the first small number and

its logarithm, our author be-

gins with the number 10 and

its logarithm 1, and extracts

continually the root of the last

number, and bisects its logarithm, as here registered in the

margin, but to far more places of figures, till he arrives at

the 53d and 54th roots, with their annexed logarithms, as
here below :

10, given n°. 1, its log.

1 3-162277 &c 0-5

2 1-778279 0-25

3 1-333521 0-125

4 1-154781 0-0625

5 1-074607 0-03125

&c. &c.

Numbers.
35 1 1'00000,00000,00000,25563,89986,40064,70
54 1•00000,00000,00000,12781.914915,20032,35

Logarithms,
0-00000,1)0000,00000, 11102,2302^,62515,65404
0-00000,00000,00000,05551, 11512,31257,82702

where the decimals in the natural numbers are to each other

in the ratio of the logarithms, namely in the ratio of 2 to 1 :

and therefore any other such small number being found, by

continual extraction or otherwise, it will then be as 12781 &c,

is to 555 l&c, so is that other small decimal, to the correspond¬

ing significant figures of its logarithm. But as every repeti¬

tion of this proportion requires both a very long multiplication

and division, he reduces this constant ratio to another equi¬

valent ratio whose antecedent is 1, by which alt the divisions

are saved: thus,

as 12781&C : 5551&C : : 1000&C : 434294481903251804,

that is, the logarithm of 1-00000,00000,00000,1

is 0-00000,00000,00000,04342,94481,90325,1804
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and therefore this last number being multiplied by any such
small decimal, found as above by continual extraction, the
product will be the corresponding logarithm of such last
root.

But as the extraction of so many roots is a very trouble¬
some operation, our author devises some ingenious contri¬
vances to abridge that labour. And first, in the 7th chapter,
by the following device, to have fewer and easier extractions
to perform : namely, raising the powers from any given prime
number, whose logarithm is sought, till a power of it be found
such that its first figure on the left hand is 1, and the next to
it either one or more ciphers; then, having divided this power
by 1 with as many ciphers as it has figures after the first, or.
supposing all after the first to be decimals, the continual roots
from this power are extracted till the decimal become suffi¬
ciently small, as when the first fifteen places are ciphers; and
then by multiplying the decimal by 43429&,c, he has the lo¬
garithm of this last root; which logarithm multiplied by the
like power of the number 2, gives the logarithm of the first
number, from which the extraction was begun : to this loga-
rithm prefixing a 1, or 2, or 3, &c, according as this number
was found by dividing the power of the given prime number
by 10, or 100, or 1000, &c; and lastly, dividing the result by
the index of that power, the quotient will be the required
logarithm of the given prime number. Thus, to find the
logarithm of 2: it is first raised to the 10th power,
as in the margin, before the first figures come to 2 1
be 10 ; then, dividing by 1000, or cutting oiffor 4 2
decimals all the figures after the first or 1, the 8 3
root is continually extracted out of the quotient 16 4
1,024, till the 47th extraction, which gives 32 5
1.00000,00000,00000,16851,60570,53949,77; the 64 6
decimal part of which multi, by 43429 kc, gives 128 7
0.00000,00000,00000,07318,55936,90623,9368 256 8
for its logarithm: and this being continually 512 9
doubled for 47 times, gives the logarithms of all 1024 10
the roots up to the first number: or being at ones
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2

4

8

16

32

64

128

256

512

1024

1048576

1073741824

1099511627776

140737488355328

1

2

3

4

5

6

7

8

9

10

20

30

40

47

2 is

multiplied by the 47th power of 2,

viz. 140737488355328, which is

raised as in the margin, it gives

O'O1029,99566,39811,95265,27744

for the logarithm of the number

1.024, true to 17 or 18 decimals:

to this prefix 3, so shall 3.0102 &c

be the logarithm of 1024 : and

lastly, because 2 is the tenth root

of 1024, divide by 10, so shall

0.30102,99956,63981,1952 he the

logarithm required to the given
number 2.

The logarithms of 1, 2, and 10

being now known-, it is remarked

that the logarithm of 5 becomes known; for since 10

= 5, therefore log. 10 — log. 2 = log. 5, which is

0.69897,00043,36018,8058 ; and that from the multiplications

and divisions of these three 2, 5, 10, with the corresponding

additions and subtractions of their logarithms, a multitude of

other numbers and their logarithms are produced; so, from

the powers of 2, are obtained 4, 8, 16, 32, 64, &c; from the

powers of 5, these, 25, 125, 625, 3125, &c ; also the powers

of 5 by those of 10 give 250, 1250, 6250, &c; and the powers

of 2 by those of 10, give 20, 200, 2000, &c ; 40, 400, 80,

800, &c ; likewise by division are obtained 2y, ly, 12y, 64,
is 3 1 6 2 'XL'-

Briggs then observes, that the logarithm of 3, the next

prime number, will be best derived from that of 6, in this

manner: 6 raised to the 9th power becomes 10077696, which

divided by 10000000, gives 1.0077696, and the root from this

continually extracted till the 46th,

is 1,00000,00000,00000,10998,59345,88155,71866 ;

the decimal part of which multiplied by 43429&C, gives

0.00000,00000,00000,04776,62844,78608,0304 for its loga¬

rithm ; and this 46 times doubled, or multiplied by the 46th

power of 2, gives 0.00336,12534,52792,69 for the logarithm
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of 1.0077696 ; to which adding 7, the logarithm of the divisor
10000000, and dividing by 9, the index of the power of 6,
there results 0.77815,12503,83643,63 for the logarithm of 6;
from which subtracting the logarithm of 2, there remains
0.47712,12547,19662,44 for the logarithm of 3.

In the eighth chapter our ingenious author decribes an ori¬
ginal and easy method of constructing, by means of differ¬
ences, the continual mean proportionals which were before
found by the extraction of roots. And this, with the other
methods of generating logarithms by differences, in this book
as well as in his “ Trigonometria Britannica,” are I believe
the first instances that are to be found of making such use of
differences, and show that lie was the inventor of what may
be called the “ Differential A'lethod.” He seems to have dis¬

covered this method in the following manner: having observed
that these continual means between 1 and any number pro¬
posed, found by the continual extraction of roots, approach
always nearer and nearer to the halves of each preceding
root, as is visible when they are placed together under each
other ; and indeed it is found that as many of the significant
figures of each decimal part, as there are ciphers between
them and the integer 1, agree with the half of those above
them; 1 say, having observed this evident approximation, lie
subtracted each of these decimal parts, which he called a, or
the first differences, from half the next preceding one, and by
comparing together the remainders or second differences,
called b, he found that the succeeding were always nearly
equal to ^ of the next preceding ones ; then taking the differ¬
ence between each second difference and a of the preceding
one, he found that these third differences, called c, were
nearly in the continual ratio of 8 to 1 ; again taking the
difference between each c and $. of the next preceding, he
found that these fourth differences, called d, were nearly in
the continual ratio of 16 to 1; and so on, the 5th e, 6th f,
&c, differences, being nearly in the continual ratio of 3-2 to 1,
of 64 to 1, &c.
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These plain obser¬
vations being made,
thev very naturally
and clearly suggested
to him the notion and
method of construct¬
ing all the remaining
numbers, from the dif¬
ferences of a few of
the first, found by ex¬
tracting the roots in
the usual way. This
will evidently appear
from the annexed spe¬
cimen of a few of the
first numbers in the

last example, for find¬
ing' the logarithm of

6 ; where, after the
9th number, the rest
are supposed to be
constructed from the

preceding differences
of each, as here shown
in the I Oth anil 11th.
And it is evident that,
in proceeding, the
trouble will become

always less and less,
the differences gradu¬
ally vanishing, till at
last only the first dif¬
ferences remain ; and
that generally each
less difference . is
shorter than the next
greater, by as many

1
<2
3
4

1,00776,96
1,00087,72833,36962,45663,84655,1
1,00193,67661,36946,61675,87022,9
1 00096,79146,39099,01728,89072,0
1,00048,38402.63846,62985,49253,5

A

5 1,00024,1 S90S,78S24,68563, S0872,7
24,19201,34423,31492,74626,7

292,55598,62928,95754,0

A
i A
B
A

B

c

G 1,00012,09381,26397,13459,43919,4
12,09454,39412,34281,90436,3

73,13015,20822,46516,9
73,13899,65732.23438,5

884,44909,76921,5
7 1,00006,04672,35055,30968,01600,5

A

6,04690,63198,56729,71959,7
l A

18,28145,25761,70359,2
r.

18,28253,80205,616.9,2
3b

110,54443,91270,0 c

110,55613,72115,2 5C
1169 80845,2

D
8 1,00003,02331,60505,65775,96479,4

A
5,02336,17527,65484,008(10,2

4,57021,99708,04320,8
B

4,57035,81440,42589,8 3"
13,81732,38269,0 c

13,81805,48908,7 Jc
73,10639,7

D
73,11302,8 n D

663,1
E

9 1,00001,51164,65999,05672,95048,8 A

1,5 1165,80252,82887,y8239,7 fA
1,14253,77215,03190,9

B
Hitherto the 1,14255,49927,01080,2
smaller differences 1,72711.97889,3

C
are found by sub- 1,72716,54783,6
tractime the larger from 4,56894,3

D
the parts of the like pre- 4,56915,0
ceding ones. 20,7

E
20,7 3f F'

Here the Greater differences 65
remain after subtracting 28555,89
the smaller from the parts 28555,24

D
of the difference of 215S8,99736,16 5C
the next preceding 21588,71180,92 c
number. 28563,44303,75797,72 3 b

28563,22715,04616, SO
B

75582,32999,52S36,47524,40 2 a
10 1,00000,75582,04436,30121,42907,60

A
2

I
n E

1784,70 ii D
1784,68 D

2693,58897,62 i c
269S,57112,94 c

7140,80678,76134,20 3 b
7140,77980,19041,26

F>
] 37791,02218,15060,71453,80 i A

l' 1 | 1,00000,37790,95077.37080,52412,54
A
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places as there are ciphers at the beginning of the decimal in

the number to be generated from the differences.

He then concludes this chapter with an ingenious, but not

obvious, method of finding the differences B, C, d, e, &c,

belonging to any number, as suppose the 9th, from that

number itself, independent of any of the preceding 8tb, 7th,

6th, 5th, &c; and it is this : raise the decimal a to the 2d,

3d, 4th, 5th, &c powers; then will the 2d (b), 3d (c), 4th
(d), &c differences, be as here below, viz.

c = £A 3 + |A\
D = *A*+*A‘+lkA 8 + T a7 + ~54 aS >
E — . 2-|a s + 7 a 6 + 10j£A’+ 12A\A 8 + 11 A-LA’&C.
F = • • 13 t \a 6 P 8 1|a 7 4- 296 vy r A 8 + 834 t V ¥ a 9 &c.
G = .

122^..^+ 1510 t 6J ¥ a 8 f 11475 t V t A 9 &c.
H = • * • 1 937 t V t A 8 4-4715 I^a’&c.
I = . 54902 1sA-A 9 &c.

Thus in the 9th number of the foregoing example, omitting
the ciphers at the beginning of the decimals, we have

A = 1.51164,65999,05672,95048,8

A* = - 2,28507,54430,06381,6726

A 3=v 3,45422,65239,48546,2
a 4 = - 5,22156,97802,288

A s = - 7,89316,8205

A 6 = - 11,93168,1

Consequently,

■i-A*= 1.14253,77215,03190,8363 = b

1-A 3 1 ,72711,32619,74273

*A 4 65269,62225

AA 3 + |A 4 1 ,72711,97889,36498 = c
Za 4 4,56887,35577

Z\Ss 6,90652
7 *6

"r'CA 5

|A 4 + ^ + t%a° 4,56894,26234 = D

2|a* - 20,71957

7a 6 CO00<1

2|a5 + 7a 6 20,72040 = E
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which agree with the like differences in the foregoing spe¬
cimen.

In the 9th chapter, after observing that from the logarithms

of 1, 2, 3, 5, and 10, before found, are to be determined, by

addition and subtraction, the logarithms of all other numbers

which can be produced from these by multiplication and

division ; for finding the logarithms of other prime numbers,

instead of that in the 7th chapter, our author then shows an¬

other ingenious method of obtaining numbers beginning with

I and ciphers, and such as to bear a certain relation to some

prime number by means of which its logarithm may be found.

The method is this : Find three products having the common

difference 1, and such that two of them are produced from

factors having given logarithms, and the third produced from

the prime number, whose logarithm is required, either mul¬

tiplied by itself, or by some other number whose logarithm is

given: then the greatest and least of these three products

being multiplied together, and the mean bj T itself, there arise

two other products also differing by 1, of which the greater,

divided by the less, gives for a quotient 1 with a small deci¬

mal, having several ciphers at the beginning. Then the lo¬

garithm of this quotient being found as before, from it will

be deduced the required logarithm of the'given prime num¬

ber. Thus, if it be proposed to find the logarithm of the

- prime number 7; here 6x8 = 48, 7x7 = 49, and 5 x 10 = 50,

will be the three products, of which the logarithms of 48 and

50, the 1st and 3d, will be given from those of their factors

6, 8, 5, 10 : also 48 x 50 = 2400, and 49 X 49 = 2401 are

the two new products, and 2401 q- 2400 = 1.00041-f- their

quotient: then the least of 14 means between 1 anti this quo¬

tient is 1.00000,00000,00000,02367,98249,04333,6405, which

multiplied by 43429 &c, produces

0.00000,00000,00000,01028,40172,88387,29715 for its loga¬

rithm; which being 44 times doubled, or multiplied by

17592186044416, produces 0.00018,09183,45421,30 for the

logarithm of the quotient 1.000114 ; which being added to

the logarithm of the divisor 2400, gives the logarithm of the
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dividend 2401 ; then the half of this logarithm is the loga¬

rithm of 49 the root of 2401, and the half of this again gives

0.84509,80400,14256,82 for the logarithm of 7, which is the

root,of 49.—The author adds another example to illustrate

this method; and then sets down the requisite factors, pro¬

ducts, and quotients for finding the logarithms of all other

prime numbers up to 100.

The 10th chapter is employed in teaching how to find the

logarithms of fractions, namely by subtracting the logarithm

of the denominator from that of the numerator, then the lo¬

garithm of the fraction is the remainder; which therefore is

either abundant or defective, that is positive or negative, as

the fraction is greater or less than 1.

In the 11 th chapter is shown an ingenious contrivance for

■very accurately finding intermediate numbers to given loga¬

rithms, by the proportional parts. On this occasion, it is re¬

marked, that while the absolute numbers increase uniformly,

the logarithms increase unequally, with a decreasing incre¬

ment ; for which reason it happens, that either logarithms or

numbers corrected by means of the proportional parts, will

not be quite accurate, the logarithms so found being always

too small, and the absolute numbers so found too great; but

yet so however as that they approach much nearer to accu¬

racy towards the end of the table, where the increments or

differences become much nearer to equality, than in the former

parts of the table. And from this property our author, ever

fruitful in happy expedients to obviate natural difficulties,

contrives a device to throw the proportional part, to be found,

from the numbers and logarithms, always near the end of the

table, in whatever part they may happen naturally to fall.

And it is this: Rejecting the characteristic of any given loga¬

rithm, whose number is proposed to be found, take the arith¬

metical complement of the decimal part, by subtracting it

from l.OOO&c, the logarithm of 10 ; then find in the table the

logarithm next less than this arithmetical complement, toge¬

ther with its absolute number ; to this tabular logarithm add

the logarithm that was given, and the sum will be a logarithm
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necessarily falling among those near the end of the table';
find then its absolute number, corrected by means of the
proportional part, which will not be very inaccurate, as fall¬
ing near the end of the table; this being divided by the ab¬
solute number, before found for the logarithm next less than
the arithmetical complement, the quotient will be the required
number answering to the given logarithm; which will be
much more correct than if it had been found from the pro¬
portional part of the difference where it naturally happened
to fall: and the reason of this operation is evident from the
nature of logarithms. But as this divisor, when taken as the
number answering to the logarithm next less than the arith-
metical complement, may happen to be a large prime num¬
ber; it is further remarked, that instead of this number and
its logarithm, we may use the next less composite number,
which has small factors, and its logarithms; because the divi¬
sion bv those small factors, instead of by the number itself,
will be performed by the short and easy way of division in
one line. And for the more easy finding proper composite
numbers and their factors, our author here subjoins an abacus,
or list of all such numbers, with their logarithms and com¬
ponent factors, from 1000 to 10000; from which the proper
logarithms and factors are immediately obtained by inspec¬
tion. Thus, for example, to find the root of 10800, or the
mean proportional between 1 and 10800: The logarithm of
10800 is 4 03342,31554,8695, the half of which is
2.01 671,18771,4347 the logarithm of the number sought, the
arithmetical complement of which log. isO.98328,81222,5653 ;
now the nearest log. to this in the abacus is 0.98227,1 2330,3957,
and its annexed number is 9600, the factors of which are 2,
6,8; to this last log. adding the log. of the number sought,
the sum is 0.99898,31107,8304, whose absolute number, cor¬
rected bv the proportional part, is 90766,12651,6521, which
being divided continually bv 2, 6, 8, the factors of 96, the
l ist quotient is 103.92304845471; which is pretty correct,"
the true number being 103.923048454133 = ^/10800.

We now arrive at the 12th and 13th chapters, in which our
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ingenious author first of all teaches the rules of the Differ¬
ential Method, in constructing logarithms by interpolation
from differences. This is the same method which has since

been more largely treated of by later authors, and particu¬
larly by the learned Mr. Cotes, in his “ Canonotechnia.”
How Mr. Briggs came by it does not well appear, as he only
delivers the rules, without laying down the principles or in¬
vestigation of them. He divides the method into two cases,
namely, when the second differences arc equal or nearly equal,
and when the differences run out to any length whatever.
The former of these is treated in the 12th chapter; and he
particularly adapts it to the interpolating 9 equidistant means
between two given terms, evidently for this reason, that then
the powers of 10 become the principal multipliers or divisors,
and so the operations performed mentally. The substance of
his process is this: Having given two absolute, numbers with
their logarithms, to find the logarithms of 9 arithmetical
means between the given numbers: Between the given loga¬
rithms take the 1st difference, as well as between each of
them and their next or equidistant
greater and less logarithms; and like¬
wise the second differences, or the two
differences of these three first differen¬
ces; then if these second differences be
equal, multiply one of them severally by
the numbers 45, 35, &c, in the annexed
tablet, dividing each product by 1000,
that is cutting off three figures from
each ; lastly, to ^ of the 1st difference
of the given logarithms, add severally
the first five quotients, and subtract the other five, so shall
the ten results be the respective first differences, to be conti¬
nually added, to compose the required series of logarithms.
Now this amounts to the same thing as what is at this day
taught in the like case: we know that if A be any term of
an equidistant series of terms, and a, b, c, &c, the first of
the 1st, 2d, 3d, &c, order of differences; then the term is,

1 45
2 35 o

■>
cco

3 25 3
4 15 ■"O o
5 5 a-

6
7

5
15

Zj
> C/5

8 o25
9 35 "Tv s

10 45 (tj
o.
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whose distance from A is expressed by x, will be thus,

z—A+xa-\-x . ~^-b + x . + &c. And if now,

with our author, we make the 2d differences equal, then c, d,

e, &c, will all vanish, or be equal to 0, and z will become

barely = A + xa -f- x ■~^~b.

Series of Terms.

A

A +

A +

A +

A +

A +

A +
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A +

A +
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Therefore if we take x successively equally to TV, tW> to>

&c, we shall have the annexed scries of terms with their dif¬

ferences. Where it is to be observed, that our author had

reduced the differences from the 1st to the 2d form, as he

thought it easier to multiply by 5 than to divide by 2. Also

all the last terms (x . *A^-b) are set down positive, because in

the logarithms b is negative.—If the two 2d differences be only

nearly equal, take an arithmetical mean between them, and

proceed with it the same as above with one of the equal 2d

differences.—He also shows how to find any one single term,

independent of the rest; and concludes the diaper with point¬

ing out a method of finding the proportional part more ac¬

curately than before.

In the 13th chapter our author remarks, that the best way

of filling up the intermediate chiliads of his table, namely from

20000 to 90000, is by quinquisection, or interposing four

equidistant means between two given terms; the method of

performing this he thus particularly describes. Of the given
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terms, or logarithms, ami two or three others on each side of
them, take the 1st, 2d, 3d, &c, differences, till the last differ¬
ences come out equal, which suppose to be the 5th differences:
divide the first differences by .5, the 2d bv 25, the 3d by 125,
the 4th by 6.’5, and the 5th by 3125, and call the respective
quotients the 1st, 2d, 3.1, 4th, 5th mean differences; or, in*
stead of dividing by these powers of 5, multiply by their re¬
ciprocals t%, -r-JVc. -^£-1-^ 5 that is, multiply by
2, 4, 8, 16, 32, cutting off respectively one, two, three, four,
five figures, from the end of the products, for the several
mean differences: then the 4th and 5th of these mean differ¬
ences are sufficiently accurate; but the 1st, 2d, and 3d are
to be corrected in this manner; from the mean third differ¬
ences subtract 3 times the 5th difference, and the remainders
are the correct 3d differences; from the mean 2d differences
subtract double the 4th differences, and the remainders arc
the correct 2d differences; lastly, from the mean 1st differ¬
ences take the correct 3d differences, and A of the 5th differ¬
ence, and the remainders will be the correct first differences.
Such are the corrections when the differences extend as far
as the 5th. However, in completing those chiliads in this
■way, there will be only 3 orders of differences, as neither the
4th nor 5th will enter the calculation, but will vanish through
their smallness : therefore the mean 2d and 3d differences will
need no correction, and the mean first differences will be cor¬
rected bv barely subtracting the 3d from them. These pre¬
paratory numbers being thus found, all the 2d differences of
the logarithms required, will be generated by adding conti¬
nually, from the less to the greater, the constant 3d difference;
and the series of 1st differences will be found by adding the
several 2d differences; and lastly, by adding continually these
1st differences to the 1st given logarithm &c, the required
logarithmic terms will be generated.

These easy rules being laid down, Mr. Briggs next teaches
how, by them, the remaining chiliads may best be completed :
namely, having here the logarithm for all numbers up to
20000, find the logarithm to every 5 beyond this, or of 20005,

VOL. i. c c
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20010, 20015, &.c, in this manner; to the logarithms of the
5th part of each of these, namely 4001, 4002, 4003, &c, add
the constant logarithm of 5, and the sums will be the loga¬
rithms of all the terms of the series 20005, 20010, 20015, See:
and these logarithms will have the very same differences as
those of the series 4001, 1002, 4003, &c; by means of which
therefore interpose 4 equidistant terms by the rules above ;
And thus the whole canon will be easily completed.

Briggs here extends the rules for correcting the mean dif¬

ferences in quinquisectiou, as far as the 20th difference; he

also lays down similar rules for trisection, and speaks of ge¬

neral rules for any other section, but omitted as being less

easy. So that he appears to have been possessed of all that
Cotes afterwards delivered in his “ Canonotechnia sive Con-

structio Tabularum per Differentias,” drawn from the Differ¬

ential Method, as their general rules exactly agree, Briggs’s

mean and correct differences being by Cotes called round and

quadrat differences, because he expresses them by the num¬

bers 1, 2,3, &c, written respectively within a small circle and

square.
Briggs also observes, that the same rules equally apply to

the construction of equidistant terms of an}' other kind, such
as sines, tangents, secants, the powers of numbers, &c : and
further remarks, that, of the sines of three equidifferent arcs,
all the remote differences may be found by the rule of pro¬
portion, because the sines and their 2d, 4th, 6th, 8th, &c
differences, are continued proportionals, as ave also the 1st,
3d, 5th, 7th, &c differences, among themselves ; and, like as
the 2d, 4th, 6th, &c differences are proportional to the sines
of the mean arcs,'so also are the 1st, 3d, 5th, &c differences
proportional to the cosines of the same arcs. Moreover, with
regard to the powers of numbers, he remarks the following
curious properties; 1st, that they will each have as many
orders of differences as are denoted by the index of the
power, the squares having two orders of differences, the cubes
three, the 4th powers four, &c; 2d, that the last differences
will be all equal, and each equal to the common difference
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of the sides or roots raised to the given power, and multiplied

by 1 x 2 x 3 x 4 &c, continued to as many terms as there are

units in the index: so, if the roots differ by 1, the second

difference of the squares will be each 1 x 2 or 2, the 3d dif¬

ferences of the cubes each 1x2x5 or 6, the 4th differences

of the 4th powers each 1 x 2 x 3 x 4 or 24, and so on ; and if

the common difference of the roots be any other number n,

then the last differences of the squares, cubes, 4th powers, 5th

powers, &c, will be respectively 2n z, 6 n 2, 24-n 4, 120 n s , &c.

Besides what was shown in the 11th chapter, concerning

the taking out the logarithms of large numbers by means of

proportional parts, Briggs employs the next or 14th chapter

in teaching how, from the first ten chiliads only, and a small

table of one page, here given, to find the number answering

to any logarithm, and the logarithm to any number, consist¬

ing of fourteen places of figures*.

Having thus fully shown the construction and chief proper¬

ties of his logarithms, our ingenious author, in the remaining

eighteen chapters, exemplifies their uses in many curiousand

important subjects; such as The Rule-of-Three, or Rule of

Proportion; finding the roots of given numbers; finding any

number of mean proportionals between two given terms; with

other arithmetical rules: also various geometrical subjects,

as 1st, Having given the sides of any plane triangle, to find

the area, the perpendicular, the angles, and the diameters of

the inscribed and circumscribed circles; 2d, In a right-angled

triangle, having given any two of these, to find the rest, viz.

one leg and the hypotenuse, one leg and the sum or differ¬

ence of the hypotenuse and the other leg, the two legs, one

leg and the area, the anpa and the sum or difference of the

legs, the hypotenuse and sum or difference of the legs, the

hypotenuse and area, and the perimeter and area; 3d, Upon

a given base, to describe a triangle, equal and isoperimetrical

* It is no more than a large exemplification of this method of Briggs’s that
has been printed so late as 1771, in a 4to tract, by Mr. Robert Flower, under
the title of “ The Radix, A New Wav r.f making Logarithms.” Thpugh
Briggs’s work might not be known to this wriler.

C C 2
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to another triangle, given; 4th, To describe the circumference

of a circle so, that the three distances from any point in it,

to the three angles of a given plane triangle, shall be to one

another in a given ratio; 5th, Having given the base, the

area, and the ratio of the two sides, of a plane triangle, to

find the sides; 6th, Given the base, difference of the sides,

and area of a triangle, to find the sides; 7th, To find a tri¬

angle whose area and perimeter shall he expressed by the

same number ; 8th, Of four given lines, of which the sum of

any three is greater than the fourth, to form a quadrilateral

figure about which a circle may he described ; 9th, Of the

diameter, circumference, and area of a circle, and the surface

and solidity of the sphere generated by it, having any one

given, to find any one of the rest; 10th, Concerning the el¬

lipse, spheroid, and gauging ; 11th, To cut a line or a num¬

ber in extreme and mean ratio; 12th, Given the diameter of a

circle, to find the sides and areas of the inscribed and circum¬

scribed regular figures of 3, 4, 5, 6, 8, 10, 12, and 16 sides;

13th, Concerning the regular figures of 7, 9, 15, 24, and 30

sides; 14th, Of isoperimetrical regular figures; 15th, Of

equal regular figures; and 16th, Of the sphere and the 5
regular bodies; which closes this introduction. Such of theseO 7

problems as can admit of it, are determined by elegant geo¬

metrical constructions, and they are all illustrated by accurate

arithmetical calculations, performed by logarithms; for the

exemplification of which they are purposely given.

At the end he remarks, that the chief and most necessary

use of logarithms, is in the doctrine of spherical trigonome¬

try, which he here promises to give in a future work, and

which was accomplished in his Trigonometria Britannica, to

the description of which we now proceed.

Of Briggs's Trigonometria Britannica.

At the close of the account of writings on the natural sines,

tangents, and secants, we omitted the description of this work

of our learned author, though it is perhaps the greatest of

this kind, all things considered, that ever was executed by one
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person; purposely reserving the account of it to this place,

not only as it is connected with the invention and construction

of logarithms, but thinking it deserved more peculiar and dis¬

tinguished notice, on account of the importance and origin¬

ality of its contents. In the first place, we observe that the

division of the quadrant, and the mode of construction, are

both new; also the numbers are far more accurate, and are

extended to more places, than they had ever been before.

The circular arcs had always been divided in a sexagesimal

proportion ; but here the quadrant is divided into degrees and

decimals, as this is a much easier mode of computation than

by GOths ; the division being completed only to lOOths of

degrees, though his design was to have extended it to lOOOths

of degrees. And, besides his own private opinion, he was

induced to adopt this mode of decimal divisions, partly at

the request of other persons, and partly perhaps from the

authority of Vieta, pa. 29 “ Calendarii Gregoriani.” And it

is probable that computations by this decimal division would

have come into general use, had it not been for the publica¬

tion of Vlacq’s tables, which came out in the interval, and

were extended to every 10 seconds, or 6th parts of minutes.

But besides this method, by a decimal division of the degrees,

of which the whole circle contains 360, or the quadrant 90,

in the 14th chapter he remarks that some other persons were

inclined rather to adopt a complete decimal division of the

whole circle, first into 100 parts, and each of these into 1000

parts; and for their sakes he subjoins a small table of the

sines of every 40th part of the quadrant, and remarks, that

from these lew the whole may be made out, by continual

quinquisections; namely, 5 times these 40 make 200, then 5

times these give 1000, thirdly 5 times these give 5000, and

lastly, 5 times these give 25000 for the whole quadrant, or

100000 for the whole circumference.

But to return. Our author’s large table consists of natural

sines to 15 places, natural tangents and secants each to 10

places, logarithmic sines to 14 places, and logarithmic tan¬

gents to 10 places each, beside the characteristic. A most
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stupendous performance! The table is preceded by an intro¬

duction, divided into two books, the one containing an ac¬

count of the truly ingenious construction of the table, by the

author himself; and the other, its uses in trigonometry’, &c,

by Henry Gellibrand, professor of astronomy in Gresham

College, who remarks in the preface, that the work was com¬

posed by the author about the year 1600 ; though it was only

published by the direction of Gellibrand in 1633, it having

been printed at Gouda under the care of Vlacq, and by the

printer of his Trigonometria Artificialis, which came out the

same year.

After briefly mentioning the common methods of dividing

the quadrant, and constructing the tables of sines, &c, from

the ancients down to his own time, he hastens to the descrip¬

tion of his own peculiar and truly ingenious method, which

is briefly this: having first divided the quadrant into a small

number of parts, as 72, he finds the sine of one of those parts;

then from it, the sines of the double, triple, quadruple, &c,

up to the quadrant or 72 parts. He next quinquisects each

of these parts, by interposing four equidistant means, by dif¬

ferences; he then quinquisects each of these; and finally each

of these again ; which completes the division as far as degrees

and centesms. The rules for performing all these things he

investigates, and illustrates, in a very ample manner. In

treating of multiple and submultiple arcs, he gives general

algebraical expressions for the sine or chord of any multiple

whatever of a given arc, which he deduced from a geometri¬

cal figure, by finding the law for the series of successive mul¬

tiple chords or sines, after the manner of Vieta; who was the

first person that I know of, who laid down general rules for

the chords of multiples and Submultiples of arcs or angles: and

the same was afterwards improved by Sir I. Newton, to such

form, that radius, and double the cosine of the first given

angle, are the first and second terms of all the proportions

for finding the sines and cosines of the multiple angles. For

assigning the coefficients of the terms in the multiple ex¬

pressions, our author here delivers the construction of figu-
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rate or polygonal numbers, inserts a large table of them, and
teaches their several uses; one of which is, that every other
number, taken in the diagonal lines, furnishes the coefficients
of the terms of the general equation, by which the sines and
chords of multiple arcs are expressed, which he amply illu¬
strates; and another, that the same diagonal numbers consti¬
tute the coefficients of the terms of any power of a binomial;
which property was also mentioned by Vieta in his Angu-
Jares Sectiones, theor. 6, 1 ; and, before him, pretty fully
treated of by Stifelius, in his Arithmetica Integra, fob 44
et seq.; where he inserts and makes the like use of such a
table of figurate numbers, in extracting the roots of all powers
whatever. But it was perhaps known much earlier, as ap¬
pears by the treatise on figurate numbers by Nicomachus,
(see Malcolm’s History, p. xviii). Though indeed Cardan
seems to ascribe this discovery to Stifelius, See, bis Opus
Novum de Proportionibus Numcrorum, where he quotes it,
and extracts the table and its use from Stifel’s book. Cardan,
in p. 135 &c, of the same work, makes use of a like table to
find the number of variations, or conjugations, as he calls
them. Stevinus too makes use of the same coefficients and
method of roots as Stifelius. See his Arith. page 25. And
even Lucas de Burgo extracts the cube root by the same co¬
efficients, about tbe year 1470: but he does not go to any
higher roots. And this is the first mention I have seen made
of this law of the coefficients of the powers of a binomial,
commonly called Sir I. Newton’s binomial theorem, though
it is very evident that Sir Isaac wras not the first inventor of
it: the part of it properly belonging to him seems to be, only
the extending it to fractional indices, which was indeed an
immediate effect of the general method of denoting all roots
like powers, with fractional exponents, the theorem being
not at all altered. However, it appears that our author
Briggs was the first who taught the rule for generating the
coefficients of the terms, successively one from another, of
any power of a binomial, independent of those of any other
power. For having shown, in his “ Abacus IIay%ijro£” (which
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I'i'l'i

ft it

lie so calls on account of its frequent and excellent use, and
of which a small specimen is here annexed), that the numbers

abacus nArxPHSTox.

H G F E D c B A

-0 -o + 0 +o -0 -0 +o ©
1 1 i i i 1 i i

9 8 7 6 5 4 3 2
36 28 21 15- 10 6 3

34 56 35 20 10 4
126 70 35 15 5

126 56 21 6
84 28 7

36 8
9

in the diagonal directions, ascending from right to left, are
the coefficients of the powers of binomials, the indices being
the figures in the first perpendicular column a, which are
also the coefficients of the 2 I terms of each power (those of
the first terms, being 1, are here omitted); and that any one
of these diagonal numbers is in proportion to the next higher
in the diagonal, as the vertical of the former is to the mar¬
ginal of the latter, that is, as the uppermost number in the
column of the former is to the first or right-hand number in
the line of the latter; having shown these things, I say, he
thereby teaches the generation of the coefficients of any
power, independently of all other powers, by the very same
law or ru'e which we now use in the binomial theorem.
Thus, for the 9th power ; 9 being the coefficient of the 2d
term, and l al n ays that of the first, to find the 3d coefficient,
we have 2 : 8 : : 9 : 36 ; for the 4th term, 3 : 1 : : 36 : 84; for
the 5th term, 4 : 6 :: 84 : 126; and so on for the rest. That
is to sav, the coeffic :ents of the terms in any power m, are
inversely as the vertical numbers or first line 1, 2, 3, 4, . . m,
and directly as the ascending numbers m, m — 1, m — 2,
m — 3, . . . i, in the first column a ; and that consequently
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those coefficients are found by the continual multiplication of
these fractions — a—3 .J_ w bi c i] j s

1 ’ 2 ’ 3 ’ 4 ’ m ’

the very theorem as it stands at this day, and as applied by
Newton to roots or fractional exponents, as it had before
been used for integral powers. This theorem then being thus
plainly taught by Briggs about the year 1600, it is surprizing
how a man of such general reading as Dr. Wallis was, could
be quite ignorant of it, as be plainly appears to be by the 85th
chapter of his algebra, where he fully ascribes the invention
to Newton, and adds, that he himself had formerly sought for
such a rule, but without success: Or how Mr. John Bernoulli,

'in the 18th century, could himself first dispute the inven¬
tion of this theorem with Newton, and then give the discovery
of it to Pascal, who was not born till long after it had been
taught by Briggs. See Bernoulli’s Works, vol. 4, page 173.
But it is not to be wondered that Briggs’s remark was un¬
known to Newton, who owed almost every thing to genius,
and deep meditation, but very little to reading: and there
can be no doubt that lie made the discovery himself, without
any light from Briggs; and that he thought it was new for
all powers in general, as it was indeed for roots and quanti¬
ties with fractional and irrational exponents.

When the above table of the sums of figurate numbers is
used by our author, in determining the coefficients of the
terms of the equation, whose root is the chord of any sub-
multiple of an arc, as when the section is expressed by any
uneven number, he remarks, that the powers of that chord or
root will he the 1st, 3d, 5th, 7th, &c, in the alternate uneven
columns, a, c, e, G, &c, with their &igns + or — as marked
to the powers, continued till the highest power be equal to
the index of the section; and that the coefficients of those
powers are the sums of two continuous numbers in the same
column with the powers, beginning with 1 at the highest
power, and gradually descending one line obliquely to the
right at each lower power : so, for a trisection, the numbers
are 1 in c, and 1 + 2 = 3 in A ; and therefore the terms are
•— 1(3) -f 3(1): for a quinquisection, the numbers are 1 in s,
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1 + 4 = 5 in c, 2 + 3 = 5 in a ; so that the terms are
1(5) — 5(3) + 5(1): for a septiseetion, the numbers are 1 in g,
J + 6 = 7 in e, 4 + 10 = 14 in c, and 3 + 4 = 7 in A; and

hence the terms are — 1 (7) + 7 (5) — 14 (3) + 7(1): and so

on; the sum of all these terms being always equal to the chord

of the whole or multiple arc. But when the section is deno¬

minated by an even number, the squares of the chords enter

the equation, instead of the first powers as before, and the

dimensions of all the powers are doubled, the coefficients

being found as before, and therefore the powers and numbers

will be those in the 2d, 4th, 6th, &c, columns: and the uneven

sections may also be expressed the same way : hence, for a

bisection the terms will be — 1 (4) + 4 (2); for a trisection

1 (6) — 6 (4) + 9 (2); for the quadrisection — 1 (8) + 8(6)

— 20 (4) + 16 (2) ; for the quinquisection 1 (10) — 10 (8) +

35 (6) — 50 (4) + 25 (2) ; and so on.

Our author subjoins another table, a small specimen of

which is here annexed, in which the first column consists of

the uneven numbers 1, 3, .5,&c, the rest being found by ad¬

dition as before, and the alternate diagonal numbers them¬

selves are the coefficients.

F

+ (6)
1

E
+ ( 5 )

1

D
- (4)

1

c

-( 3 )1

B
+ (2)

1

A

(1)
1

7 6 5 4 3

20 14 9 5

30 16 7
25 9

11

The method is quite different

from that of Vieta, who gives an¬

other table for the like purpose,

a small part of which is here an¬

nexed, which is formed by adding,

from the number 2, downwards

obliquely towards the right; and
the coefficients of the terms stand

upon the horizontal line.

1st Vieta’s Table.

2

3 2d

4 2

5 5 3d

6 9 2

7 14 7 4th

8 20 16 2

9 27 30 9 5 th

10 35 50 25 2 6th

A
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These angular sections were afterwards further discussed
by Oughtred and Wallis. And the same theorems of Vieta

Herman and the Bernoullis, in the Leipsic Acts, and the
Memoirs of the Royal Academy of Sciences. These theo¬
rems they expressed by the alternate terms of the power of a
binomial, whose exponent is that of the multiple angle or
section. And De Lagny, in the same Memoirs, first showed,
that the tangents and secants of multiple angles are also ex¬
pressed by the terms of a binomial, in the form of a fraction,
of which some of those terms form the numerator, and others
the denominator. Thus, if r express the radius, s the sine, c
the cosine, t the tangent, and s the secant, of the angle a ;
then the sine, cosine, tangent, and secant of n times the
angle, are expressed thus, viz.

where it is evident, that the scries in the sine of n A, consists
of the even terms of the power of the binomial (c + s)", and
the series in the cosine of the uneven terms of the same power;
also the series in the numerator of the tangent, consists of the
even terms of the power (r -{- t) n, and the denominator, both
of the tangent and secant, consists of the uneven terms of the
same power (r + t) n. And if the diameter, chord, and chord
of the supplement, be substituted for the radius, sine and co¬
sine, in the expressions for the multiple sine and cosine, the
result will give the chord, and chord of the supplement, of n
times the arc or angle a. These, and various other expres-

and Briggs have been since given in a different form, by

Sin. n a:
X (—c” -1 *

n.n- 1./i-2

1.2.3 ■cn~ 5sS& c)1 . 2 . 3 . 4 . 5

Cosine «a x (c”— If—-c"~V +
»-i ' 1.2 T

i
•a-l.,4

..2.3.4

n.n-\-n-Q.n -3 ,tt - 4I .»-2
■r"-V+

1 . 2 . 3 . 4 . 51.2.3
Tang.7!A~rX 2.«-3n n - 1 r’: H' & c,

1.2.3 • 4

Sec. nA. — rX s- or r‘l -f f

r'
n.n- 1r’-V-+ n •n - 1 . ;j - 2.7/ - 3---r -r ”“ 4<1 &C.
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sions, for multiple and submultiple arcs, with other improve¬
ments in trigonometry, have also been given by Eulc.r, and
other eminent writers on the same subject.

The before mentioned De Lagny offered a project for sub¬
stituting, instead of the common logarithms, a binary arith¬
metic, which he called the natural logarithms, and which be
and Leibnitz seem to have both invented about the same time,
independently of each other: but the project came to nothing.
De Lagny also published, in several Memoirs of the Royal
Academy, a new method of determining the angles of figures,
which lie called Goniometry. It consists in measuring, with
a pair of compasses, the arc which subtends the angle in ques¬
tion : however, this arc is not measured in the usual way, by
applying its extent to any preconstructed scale; but by ex¬
amining what part it is of halt' the circumference of the same
circle, in this manner: from the proposed angular point as
a centre, with a sufficiently large radius, a semicircle being
described, a part of which is the arc intercepted by the sides
of the proposed angle, the extent of this arc is taken with a
pair of fine compasses, and applied continually upon the arc
of the semicircle, by which he finds how often it is contained
in the semicircle, with usually a small arc remaining; in the
same manner he measures how often this remaining arc iso

contained in the first arc ; and what remains again is applied
continually to the first remainder ; and so the 3d remainder to
the 2d, the 4th to the 3d, and so on till there be no remainder,
or else till it become insensibly small. By this process he ob¬
tains a series of quotients, or fractional parts, one of another,
which being properly reduced into one fraction, give the ra¬
tio of the first arc to the semicircuinference, or of the pro¬
posed angle, to two right angles or ISO degrees, and conse¬
quently that angle in degrees, minutes, Ac, if required, and
that commonly, he says, to a degree of accuracy far exceed¬
ing the calculation of the same by means of any tables of
sines, tangents or secants, notwithstanding the apparent pa¬
radox in this expression at first sight. Thus, if the 1st are
be 4 times contained in the semicircle, the remainder once
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contained in the first arc, the next 5 times in the second, and
finally the fourth 2 times in the third: Here the quotients are
4, 1, 5, 2; consequently the fourth or last arc was L the 3d;
therefore the 3d was — or of the 2d, and the 2d was

or qq- of the 1st, and the first, or arc sought, was — or °f
the semicircle ; and consequently it contains 37-f degrees, or
37° 8' 34"£. Hence it is evident, that this method is'in fact
nothing more than an example of continued fractions, the first
instance of which was given by lord Brouncker.

But to return from this long digression ; Mr. Briggs next
treats of interpolation by differences, and chiefly of quinqui-
section, after the manner used in the 13th chapter of his con¬
struction of logarithms, before described. He here proves
that curious property of the sines and their several orders of
differences, before mentioned, namely, that, of equidifferent
arcs, the sines, with the 2d, 4th, 6th, &c differences, are con¬
tinued proportionals ; as also the cosines of the means between
those arcs, and the 1st, 3d, 5th, &c differences. And to this
treatise on interpolation by differences, he adds a marginal
note, complaining that this 13th chapter of his “ Arithmetica
Logarithmica” had been omitted by Vlacq in his edition of
it; as if he were afraid of an intention to deprive him of the
honour of the invention of interpolation by successive differ¬
ences. The note is this : “ Modus corrcctionis a me traditus
est Arithmetic® Logarithmic® capite 13, in editione Londi-
nensis : Istud autem caput una cum seqiienti in editione Ba-
tava me inconsulto et inscio omissum fuit: nec in omnibus,
editionis illius author, vir alioqui industrius et non indoctus,
meam mentern videtur assequutus: Ideoque, ne quicquam
desit cuiquam, qui integrum canonem conficere cupiat, qute-
dam maxime necessaria illinc hue transferenda censui.”

A large specimen of quinquisection by differences is then
given, and he shows how it is to be applied to the construc¬
tion of the whole canon of sines, both for 100th and 1000th
parts of degrees ; namely, for centesms, divide the quadrant
first into 72 equal parts, and find their sines by the primary
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methods; then these quinquisected give 300 parts, a second

quinquisection gives 1800 parts, and a third gives 9000 parts,

or centesins of degrees: but for miilesms, divide the quadrant

into 14-4 equal parts; then one quinquisection gives 720, a

second gives 3600, a third 18000, and a fourth gives 90000

parts, or miilesms.

He next proceeds to the natural tangents and secants, which

he directs to be raised in the same manner, by interpolations

from a few primary ones, constructed from the known pro¬

portions between sines, tangents, and secants; excepting that

half the tangents and secants are to be formed by addition

and subtraction only, by means of some such theorems as

these, namely, 1st, the secant of an arc is equal to the sum

of the tangent of the same arc, and the tangent of half its

complement, which will find every other secant; 2d, double

the. tangent of an arc added to the tangent of half its comple¬

ment, is equal to the tangent of the sum of that arc and the

said half complement, by which rule half the tangents will

be found; &c.

In the two remaining chapters of this book are treated the

construction of the logarithmic sines, tangents, and secants.

This is preceded by some remarks on the origin and inven¬

tion of them. Our author here observes, that logarithms may

be of various kinds; that others had followed the plan of

Baron Napier the first inventor, among whom Benjamin

Ursinus is especially commended, who applied Napier’s loga¬

rithms to every ten seconds of the quadrant; but that he

himself, encouraged by the noble inventor, devised other lo¬

garithms that were much easier and more excellent*. He

says he put 10, with ciphers, for the logarithm of radius ; 9

for the logarithm sine of 5° 44', whose natural sine is one

10th of the radius; 8 for that of 34', whose natural sine is one

100th of the radius, and so on; thereby making 1 the loga-

* His words are: u Ego vero ipsius inventions primi cohortatione adjutus,
alios logarithnios applieandos censui, qui multo faciliorem usum habent, pr®«
stantiorexn. Lo^avithmus radii circularis vcl sinus totius, a me ponitur 10 fee.”
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rithm of the ratio of 10 to 1, which is the characteristic of his

species of logarithms.

To construct the logarithmic sines, he directs first to divide

the quadrant into 72 equal parts as before, and to find the lo¬

garithms of their natural sines as in the 14th chapter of his

Arithmetica Logarithmica; after which, this number will be

increased by quinquisection, first to 360, then to 1800, and

lastly to 9000, or centesms of degrees. But if millesms of

degrees be required, divide the quadrant first into 144equal

parts, and then by four quinquisections these will be extended

to the following parts, 720, 3600, 18000, and 90000, or mil¬

lesms of degrees. He remarks however, that the logarithmic

sines of only half the quadrant need be found in this manner,

as the other half may be found by mere addition, or subtrac¬

tion, by means of this theorem, as the sine of half an arc is to

half radius, so is the sine of the whole arc to the cosine of the

said half arc. This theorem he illustrates with examples, and

then adds a table of the logarithmic sines of the primary 72

parts of the quadrant, from which the rest are to be made out

by quinquisection.

In the next chapter our author shows the construction of

the natural tangents and secants more fully than he had done

before, demonstrating and illustrating several curious theo¬

rems for the easy finding of them. He then concludes this

chapter, and the book, with pointing out the very easy con¬

struction of the logarithmic tangents and secants by means of
these three theorems:

1st, As cosine : sine : : radius : tangent,

2d, As tangent : radius : : radius : cotangent,

3d, As cosine : radius : : radius : secant.

So that in logarithms, the tangents are found by subtracting

the cosines from the sines, adding always 10 or the radius ;

the cotangents are found by subtracting always the tangents

from 20 or double the radius; and the secants are found by

subtracting the cosines from 20 the double radius.—The 2d

book, by Gellibrand, contains the use of the canon in plane

and spherical trigonometry.
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Besides Briggs’s methods of constructing logarithms, above
described, no others were given about that time. For as to
the calculations made by Vlacq, his numbers being carried to
comparatively but few places of figures, they were performed
bv the easiest of Briggs’s methods, and in the manner which
this ingenious man had pointed outin his two volumes. Thus,
the 70 chiliads of logarithms, from 20000 to 90000, computed
by Vlacq, and published in 1628, being extended only to 10
places, yield no more than two orders of mean differences,
which are also the correct differences, in quinquisection, and
therefore will be made out thus, namely, one-filth of them by
the mere addition of the constant logarithm of 5-, and the other
four-fifths of them by two easy additions of very small num¬
bers, namely, of the 1st and 2d differences, according to the
directions given in Briggs’s Arith. Log.c, 13, p. 31. And as
to Vlacq’s logarithmic sines and tangents to eveiy 10 seconds,
they were easily computed thus; the sines for half the qua¬
drant were found by taking the logarithms to the natural
sines in Rheticus’s canon ; and then from these the logarith¬
mic sines to the other half quadrant were found by mere
addition and subtraction; and from these all the tangents by
one single subtraction. So that all these operations might
easily be performed by one person, as quickly as a printer
could set up the types; and thus the computation and printing
might both be carried on together. And hence it appears
that there is no reason for admiration at the expedition with
which these tables were said to have been brought out.

Of certain curves related to Logarithms.

About this time the mathematicians of Europe began to

consider some curves which have properties analogous to

logarithms. Edmund Gunter, it has been said, first gave the

idea of a curve, whose abscisses ere in arithmetical progres¬

sion, while the corresponding ordinates are in geometrical

progression, or whose abscisses are the logarithms of their

ordinates; but I cannot find it noticed in any part of his

writings. The same curve was afterwards considered by
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others, and named the Logarithmic or Logistic curve by
Huygens, in his “ Dissertatio de Causa Gravitatis,” where he
enumerates ail the principal properties of this curve, showing
its analogy to logarithms. Many other learned men have also
treated of its properties ; particularly Le Seur and Jacquier,
in their commentary on Newton’s Principia ; by Dr. John
Keill, in the elegant little tract on logarithms, subjoined to
his edition of Euclid’s Elements ; and by Francis Maseres,
Esq. cursitor baron of the exchequer, in his ingenious trea¬
tise on Trigonometry; in which books the doctrine of loga¬
rithms is copiously and learnedly treated, and their analogy
to the logarithmic curve &c fully displayed.—It is indeed
rather extraordinary that this curve was not sooner announc¬
ed to the public ; since it results immediately from baron
Napier’s manner of conceiving the generation of logarithms,
by only supposing the lines which represent the natural num¬
bers to be placed at right angles to that upon which the
logarithms are taken. This curve greatly facilitates the con¬
ception of logarithms to the imagination, and affords an
almost intuitive proof of the very important property of their
fluxions, or very small increments, to wit, that the fluxion of
the number is to the fluxion of the logarithm, as the number
is to the subtangent; as also of this property, that, if three
numbers be taken very nearly equal, so that their ratios to
each other may differ but a little from a ratio of equality, as
for exam, the three numbers 10000000, 10000001, 10000002,
their differences will be very nearly proportional to the loga¬
rithms of the ratios of those numbers to each other: all which
follows from the logarithmic arcs being very little different from
their chords, when they are taken very small. And the con¬
stant subtangent of this curve is what was afterwards by Cotes
called the Modulus of the system of logarithms: and since, by
the former of the two properties above-mentioned, this sub¬
tangent is a 4th proportional to the fluxion of the number,
the fluxion of the logarithm, and the number itself; this pro¬
perty afforded occasion to Mr. Baron Maseres to give the fol¬
lowing definition of the modulus, which is the same iu effect

VOL. i. d r>
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as Cotes’s, but more clearly expressed, namely, that it is the
limit of the magnitude of a 4th proportional to these three
quantities, to wit, the difference of anv two natural numbers
that are nearly equal to each other, either of the said num¬
bers, and the logarithm or measure of the ratio they have to
each other. Or we may define the modulus to be the natural
number at that part of the system of logarithms, where the
fluxion of the number is equal to the fluxion of the logarithm,
or where the numbers and logarithms have equal differences.
And hence it follows, that the logarithms of equal numbers,
or of equal ratios, in different systems, are to one another as
the moduli of those systems. Further, the ratio whose mea¬
sure or logarithm is equal to the modulus, and thence by
Cotes called the ratio modular is, is by calculation found to be
the ratio of 2'71 8281828459 &c to 1, or of 1 to •3678794111T1
&c; the calculation of which number may be seen at full
length in Mr. Baron Maseres’s treatise on the Principles of
Life Annuities, pa. 274 and 275.

The hyperbolic curve also afforded another source for de¬
veloping and illustrating the properties and construction of
logarithms. For the hyperbolic areas lying between the curve
and one asymptote, when they are bounded by ordinates pa¬
rallel to the other asymptote, are analogous to the logarithms
of their abscisses, or parts of the asymptote. And so also
are the hyperbolic sectors; any sector bounded by an arc of
the hyperbola and two radii, being equal to the quadrilateral
space bounded by the same arc, the two ordinates to either
asymptote from the extremities of the arc, and the part of
the asymptote intercepted between them. And though Na¬
pier’s logarithms are commonly said to be the same as hyper¬
bolic logarithms, it is not to be understood that hyperbolas
exhibit Napier’s logarithms only, but indeed all other possible
systems of logarithms whatever. For, like as the right-angled
hyperbola, the side of whose square inscribed at the vertex
is 1, gives Napier’s logarithms ; so any' other system of loga¬
rithms is expressed by the hyperbola whose asymptotes form
a certain oblique angle, the side of the rhombus inscribed at
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the vertex of the hyperbola in this case also being still l,the

same as the side of the square in the right-angled hyperbola.

But the areas of the square and rhombus, and consequently

the logarithms of any one and the same number or ratio, dif¬

fering according to the sine of the angle of the asymptotes.

And the area of the square or rhombus, or anv inscribed pa-

rallelog ram, is also the same thing as what was by Cotes

called the modulus of the system of logarithms ; which mo¬

dulus will therefore be expressed by the numerical measure

of the sine of the angle formed by the asymptotes, to the

radius 1 ; as that is the same with the number expressing the

area of the said square or rhombus, the side being 1: which
is another definition of the modulus to be added to those we

remarked above, in treating of the logarithmic curve. And

the evident reason of this is, that in the beginning of the

generation of these areas, from the vertex of the hyperbola,
the nascent increment of the abscisse drawn into the altitude

1, is to the increment of the area, as radius is to the sine of

the angle of the ordinate and abscisse, or of the asymptotes ;

and at the beginning of the logarithms, the nascent increment

of the natural numbers is to the increment of the logarithms,

as 1 is to the modulus of the system. Hence we easily dis¬

cover that the angle formed by the asymptotes of the hyper¬

bola exhibiting Briggs’s system of logarithms, will be 25 deg.

44 minutes, 25c seconds, this being the angle whose sine is

0'4342944819 &c, the modulus of this system.

Or indeed any one hyperbola will express all possible sys¬

tems of logarithms whatever, namely, if the square or rhom¬

bus inscribed at the vertex, or, which is the same thing, any

parallelogram inscribed between the asymptotes and the curve

at any other point, be expounded by the modulus of the

system ; or, which is the same, by expounding the area, in¬

tercepted between two ordinates which are to each other in

the ratio of 10 to 1, by the logarithm of that ratio in the

proposed system.

As to the first remarks on the analogy between logarithms

and the hyperbolic spaces; it having been shown by Gregory
D d 2
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St. Vincent, in his Quadratura Circuli et Sectionum Coni,

puhiished at Antwerp in 1647, that if one asymptote be

divided into parts, in geometrical progression, and from the

points of division ordinates be drawn parallel to the other

asymptote, they will divide the space between the asymptote

and curve into equal portions; from hence it was shown by

Mersenne, that, by taking the continual sums of those parts,

there would be obtained areas in arithmetical progression,

adapted to abscisses in geometrical progression, and which

therefore were analogous to a system of logarithms. And the

same analogy was remarked and illustrated soon after, by

Huygens and many others, who showed how to square the

hyperbolic spaces by means of the logarithms.

There are also innumerable other geometrical figures hav¬

ing properties analogous to logarithms; such as the equian¬

gular spiral, the figures of the tangents and secants, &c; which

it is not to our purpose to distinguish more particularly.

Of Gregory's Computation of Logarithms.

On the other hand, Mr. James Gregory, in his Vera

Circuli et Hyperbola: Quadratura, first printed at Patavi, or

Padua, in the year 1667, having approximated to the hyper¬

bolic asymptotic spaces by means of a series of inscribed and

circumscribed polygons, thence shows how to compute the

logarithms, which are analogous to those areas: and thus

the quadrature of the hyperbolic spaces became the same

thing as the computation of the logarithms. He here also

lays down various methods to abridge the computation, with

the assistance of some properties of numbers themselves, by

which we are enabled to compose the logarithms of all prime

numbers under 1000, each by one multiplication, two divi¬

sions, and the extraction of the square root. And the same

subject is further pursued in his Exercitationes Geometricae,
to be described hereafter.

Mr. Gregory was born at Aberdeen in Scotland 1638, where

he was educated. He was professor of mathematics in the

college of St. Andrews, and afterwards in that of Edinburgh.
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He (lied of a fever in December 1675, being only 36 years

of age.

Of Mercator's Logarithmotechnia.

Nicholas Mercator, a learned mathematician, and an inge¬
nious member of the Royal Society, was a native of Holstein
in Germany, but spent most of his time, in England, where
he died in the year 1690, at about 50 years: of age. He was
the. author of many works in geometry, geography, astro¬
nomy, astrology, &c.

In 1668, Mercator published his Logarithmotechnia, sive
methodus construendi Logarithmos nova, accurata, et l’acilis;
in which he delivers a new and ingenious method of comput¬
ing the logarithms, on principles purely arithmetical; which,
being curious and very accurately performed, I shall here give
a rather full and particular account of that little tract, as well
as of the small specimen of the quadrature of curves by infi¬
nite series, subjoined to it; and the more especially as thi,s
work gave occasion to the public communication of some of
Sir Isaac Newton’s earliest pieces, to evince that he had not
borrowed them from this publication. So that it appears
these two ingenious men had, independent of each other, in
some instances fallen upon the same things.

Mercator begins this work by remarking that the word
logarithm is composed of the words ratio and number, being
as much as to say the number of ratios; which he observes is
quite agreeable to the nature of them, for that a logarithm is
nothing else but the number of ratiunculte contained in the
ratio which any number bears to unity. He then makes a
learned and critical dissertation on the nature of ratios, their
magnitude and measure, conveying a clearer idea of the na¬
ture of logarithms than had been given by either Napier or
Briggs, or any other writer except Kepler, in his w’ork bei'ore
described ; though those other writers seem indeed to have
had in their own minds the same ideas on the subject as
Kepler and Mercator, but without having expressed them so
clearly. Our author indeed pretty closely follows Kepler in
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3iis modes of thinking and expression, and after him in plain

and express terms calls logarithms the measures of ratios ;

and, in order to the right understanding that definition of

them, he explains what he means by the magnitude of a ratio.

This he does pretty fully, but not too fully, considering the

nicety and subtlety of the subject of ratios, and their magni¬

tude, with their addition to, and subtraction from, each other,

which have been misconceived by very learned mathemati¬

cians, who have thence been led into considerable mistakes.

Witness the oversight of Gregory St. Vincent, which Huygens

animadverted on in the Ejteraa-ij Cyclometria; Gregorii a

Sancto Vincentio, and which arose from not understanding,

or not adverting to, the nature of ratios, and their proportions

to one another. And many other similar mistakes might here
be adduced of other eminent writers. From all which we

must commend the propriety of our author’s attention, in so

judiciously discriminating between the magnitude of a ratio,

as of a to b, and the fraction or quotient arising from the

division of one term of the ratio by the other; which latter

method of consideration is always attended with danger ot

errors and confusion on the subject; though in the 5th defi¬

nition of the 6th book of Euclid this quotient is accounted

the quantity of the ratio; but this definition is probably not

genuine, and therefore very properly omitted by professor
Simson in his edition of the Elements. And in those ideas on

the subject of logarithms, Kepler and Mercator have been

followed by Halley, Cotes, and most of the other eminent
writers since that time.

Purely from the above idea of logarithms, namely, as being

the measures of ratios, and as expressing the number of rati-

unculce contained in any ratio, or into which it may be divided,

the number of the like equal ratiuncultv contained in some one

ratio, as of 10 to 1, being supposed given, our author shows

how the logarithm or measure of any other ratio may be found.

But this however only by-the-bye, as not being the principal

method he intends to teach, as his last and best, and which

we arrive not at till near the end of the book, as we shall see
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below. Having shown then, that these logarithms, or num¬
bers of small ratios, or measures of ratios, may be all properly
represented by numbers, and that of 1, or the ratio of equa¬
lity, the logarithm or measure being always 0, the logarithm
of 10, or the measure of the ratio 10 to l, is most conveniently
represented by 1 with any number of ciphers; he then pro¬
ceeds to show how the measures of all other ratios may be
found from this last supposition. And he explains the prin¬
ciples by the two following examples.

First, to find the logarithm of 100-5*, or to find how many
ratiuncuhe are contained in the ratio of 100 -5 to 1, the number
of ratiuncuhe in the decuple ratio, or ratio of 10 to 1, being
1 . 0000000 .

The given ratio 100-5 to 1, lie first divides into its parts,
namely, 100 -5 to 100, 100 to 10, and 10 to 1 ; the last two of
which being decuples, it follows that the characteristic will be
2, and it only remains to find how many parts of the next
decuple belong to the first ratio of 100-5 to 100. Now if each
term of this ratio be multiplied by itself, the products will be
in the duplicate ratio of the first terms, or this last ratio will
contain a double number of parts; and if these be multiplied
by the first terms again, the ratio of the last products will
contain three times the number of parts; and so on, the num¬
ber of times of the first parts contained in the ratio of any like
powers of the first terms, being always denoted by the expo¬
nent of the power. If therefore the first terms, 100-5 and 100,
be continually multiplied till the same powers of them have to
each other a ratio whose measure is known, as suppose the de¬
cuple ratio 10 to 1, whose measure is 1.0000000; then the ex¬
ponent of that power shows what mul.this measure 1.0000000,
of the decuple ratio, is of the required measure of the first ratio
100'5 to 100; and consequently dividing 1.0000000 by that
exponent, the quotient is the measure of the ratio 100"5 to 100
sought. The operation for finding this, he sets down as here
follows; where the several multiplications are all performed in

• Mercator distinguishes his decimals from integers thu? 100[5, or 100|5.
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the contracted way, by inverting the figures of the multiple
and retaining only the first number of decimals in each pro¬
duct. '

100-5000
5001

1005000
5025

1010025
5200101

1010025
10100

20
5

1020150
0510201

1020150
20403

102
51

1040106
6010401

1083068
8603801

1113035
5303111

T316oII
1106131

1893406
6043981

3584985
5894853

12852116

Since
the

power
. . i

. . i

. . 2

. . 4

. . 4

. . 8
. . 8

. . 16
. . 16

. . 32

. . 32

. . 64

. . 64

. 128

. 128
. 256
. 256

. 512

This power being
greater than the
decuple of the like
power of 100, which
must always be 1
with ciphers, re¬
sume therefore the
256th power, and
multiply it, not by
itself, but by the
next before, viz. by
the 128th, thus

3584985 . 256
6043981 . 128
6787831 . 384
1106731 . 64
9340130 . 448
5303711 . 32

10956299 . 480

This power again
exceeding the same
power of 100 more
than 10 times,there-
fore draw the same
448th, not into the
32d, but the next
preceding, thus

9340130 . 448
8603801 . 16

10115994 . 464

This being again
too much,. instead
of the I 6th, draw it
into the 8 th, or next
preceding, thus
"9340130 . 448

6010401 . 8

9720329 . 456
0520201 . 4
9916193 . 460
5200101 . 2

10015603 . 462
Which power

again exceeds the
limit; theref draw
the 460th into the

J st, thus9916193 . 460
5001 . 1

9965714 . 461

Since therefore
the 462d power of
100’5 is greater,
and the461stpower
is less, than the de¬
cuple of the same
power of 100, the
ratio of 100-5 to
100 is contained in
the decuple more
than 461 times, but
less than 462 times.
Again,

460 7 f 99161931 and the differences
461 y P°}ver 3 9965774 [■ 49581 ( nearly
462) 1S 1 10015603 J 49829 (equal;



TRACT 21. .LOGARITHMS. 400

therefore the proportional part which the exact power, or
J0000000, exceeds the next less 9965774, will be easily and
accurately found by the Golden Rule, thus :

The just power . . 10000000
and the next less , . 9965774

the difference . 34226; then
As 49829 the dif. betw een the next less and greater,

: To 34226 the dif. between the next less and just,
: : So is 10000 : to 6868, the decimal parts; and therefore

the ratio of 100'5 to 100, is 461'6868 times contained in the
decuple or ratio of 10 to 1 . Dividing now l.0000000, the
measure of the decuple ratio, by 461'6868, the quotient
00216597 is the measure of the ratio of 100'5 to 100; which
being added to 2 the measure of 100 to 1, the sum 2.00216597
is the measure of the ratio of 100'5 to 1, that is, the log. of
100-5 is 2.00216597.—In the same manner he next investi¬
gates the log. of 99’5, and finds it to be 1.99782307.

A few observations are then added, calculated to generalize
the consideration of ratios, their magnitude and affections. It
is here remarked, that he considers the magnitude of the ratio
between two quantities as the same, whether the antecedent
be the greater or the less of the two terms: so, the magnitude
of the ratio of 8 to 5, is the same as of 5 to 8; that is, by the
magnitude of the ratio of either to the other, is meant the
number of ratiuncula between them, which will evidently be
the same, whether the greater or less term be the antecedent.
And he further remarks that, of different ratios, when we di¬
vide the greater term of each ratio by the less, that ratio is
of the greater mass or magnitude, which produces the greater
quotient, et vice versa; though those quotients are not pro¬
portional to the masses or magnitudes of the ratios. But
when he considers the ratio of a greater term to a less, or of
a less to a greater, that is to say, the ratio of greater or less
inequality, as abstracted from the magnitude of the ratio, he
distinguishes it by the word affection, as much as to say,
greater or less affection, something in the manner of positive
and negative quantities, or such as are affected with the signs
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-f. and —. The remainder of tills work he delivers ill several
propositions, as follows.

Prop. 1. In subtracting from each other, two quantities
of the same affection, to wit, both positive, or both negative;
if the remainder be of the same affection with the two given,
then is the quantity subtracted the less of the two, or expressed
by? the less number; but if the contrary', it is the greater.

_ - ... a a+b a+2J „
Prop. 2. In any continued ratios, as — r, ——, ——, &c," J ' a+b ’ a + 'Zb1 a + ib ’ ’

(by which is meant the ratios of a to s + b, a -1- b to a -4- 2b,

a + 2b to a 3 b, he,) of equidifferent terms, the antecedent
of each ratio being equal to the consequent of the next pre¬
ceding one, and proceeding from less terms to greater ; the
measure of each ratio will be expressed byr a greater quantity
than that of the next following ; and the same through all
their orders of differences; namely', the 1st, 2d, 3d, &c, dif¬
ferences; but the contrary, when the terms of the ratios
decrease from greater to less.

Prop. 3. In any continued ratios of equidifferent terms, if
the 1st or least be a, the difference between the 1st and 2d b,
and c, d, e, &c, the respec¬
tive first term of their 2d, 1st term a
3d, 4th, &c, differences: 2d term a + b
then shall the several quan- 3d term a -f 2b -f c
tities themselves be as in 4th term a 4- 3b q- 3c + d
theannexedschcme; where 5th term <z + Ab -f 6c -f 4 d+c
each term is composed &c. &c.
of the first term, together
with as many of the dif¬ 1 1 1 1 1 1 1 1 1
ferences as it is distant 1 2 3 4 5 6 7 8 9
from the first term, and to 1 3 6 10 15 21 28 36

those differences joining. 1 4 10 20 35 56 84
for coefficients, the num¬ 1 5 15 35 70 126

bers in the sloping or ob¬ 1 6 21 56 126
lique linescontained in the 1 1 28 84
annexed table of figurate 1 8 36
numbers, in the same 1 9
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b

2b + e

Zb + 3c - d

4 b + 6c — 4c?-f c

&c.

manner, he observes, 1st term a.

as the same figurate 2d term a

numbers complete the 3d term a

powers raised from a bi- 4th term a

normal root, as had long 5th term a

before been taught by &c,
others. He also re¬

marks, that this rule not only gives any one term, but also

the sum of any number of successive terms from the begin¬

ning, making the 2d coefficient the first, the 3d the 2d,

and so on; thus, the sum of the first 5 terms is 5a + 10 b 4-

10c -f- 5d + e.

In the 4th prop, it is shown, that if the terms decrease,

proceeding from the greater to the less, the same theorems

hold good, by only changing the sign of every other term,

as in the margin.

Prop. 5 shows how to find any multiple nearly of a given

ratio. To do this, take the difference of the terms of the

ratio, which multiply by the index of the multiple, from the

product subtract the same difference ; add half the remain¬

der to the greater term of the ratio, and subtract the same

half from the less term, which give two terms expressing the

required multiple a little less than the truth —Thus, to qua¬

druple the ratio : the difference of the terms 3 multiplied

by 4 makes 12, from which 3 deducted leaves 9, its half 4£-

added to the greater term 28 makes 32-'-, and taken from the

less term 25, leave 20 l ; then 20y and 32£ are the terms

nearly of the quadruple sought, or reduced to whole num¬

bers gives A.L, a little less than the truth.

Prop. 6 and 1 treat of the approximate multiplication and

division of ratios, or, which is the same thing, the finding

nearly any powers or anv roots of a given fraction, in an easy

manner. The theorem for raising any power, when reduced

to a simpler form, is this, them potveror—, or (—) OT, is=p^—j

nearly, where s is = a -f b, and d — am b, the sum and dif-
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ference of the two numbers, and the upper or under signs

take place according as is a proper or an improper frac¬
tion, that is, according as a is less or greater than b. And the
th. for extracting the mth root of 4> is ^/r or =
nearly ; which latter rule is also the same as the former, as
will he evident bv substituting — instead of m in the first

** 0 m

theorem. So that universally (4)r 5 is=”4c4 nearly. These

theorems however are nearly true only in some certain cases,

namely when ^ and — do not differ greatly from unity. And
in the 7th prop, the author shows how to find nearly the error
of the theorems.

In the 8th prop, it is shown, that the measures of ratios of
equidifferent terms, are nearly reciprocally as the arithmeti¬
cal means between the terms of each ratio. So, of the ratios
tI’ tt’ the mean between the terms of the first ratio is
17, of the 2d 34, of the 3d 51, and the measure of the ratios
are nearly as T'T , 3 rT .

From this property he proceeds, in the 9th prop, to find the
measure of any ratio less than which has an equal dif¬
ference, 1, of terms. In the two examples, mentioned near
the beginning, our author found the logarithm, or measure
of the ratio, of to he 21769^, and that of to he
21659-ji* ; therefore the sum 43429 is the logarithm of tII'.-I-,
or X tw t > or the logarithm of is nearer 43430,
as found by other more accurate computations. Now to find
the logarithm of having the same difference of terms, 1,
with the former ; it will be, by prop. 8, as 100'5 (the mean
between 101 and 100): 100 (the mean between 99-5 and 100 -5)
: : 43430 : 43213 the logarithm of 44 tj or the difference be¬
tween the logarithms of 100 and 101. But the log. of 100 is
2 ; therefore the logarithm of 101 is 2.0043213.—Again, to
find the logarithm of 102, we must first find the logarithm of

; the mean between its terms being 101-5, therefore as
101*5 : 100 :: 43430 : 42788 the logarithm of -fg-J-j or the dif-
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ference of the logarithms of 101 and 102. But the logarithm
of 101 was found above to be 2.0043213 ; therefore the log.
of 102 is 2.0086001. —So that, dividing continually 86S596
(the double of 434298 the logarithm of x |4'4 or 4-g-f.) by each
number of the series 201, 20.3, 205, 207, &c, then add 2 to
the 1st quotient, to the sum add the 2d quotient, and so on,
adding always the next quotient to the last sum, the several
sums will be the respective logarithms of the numbers in this
series 101, 102, 103, 104, &c.

The next, or prop. 10, shows that, of two pair of conti¬
nued ratios, whose terms have equal differences, the difference
of the measures of the first two ratios, is to the difference of
the measures of the other two, as the square of the common
term in the two latter, is to that in the former, nearly. Thus,
in the four ratios --—, —— —— ; as the measure ofa+b' o + 26’ o + 46’ 0+56’

\a+ bj (*^ ie difference °f the first two, or the quotient of the

two fractions): is to the measure :: so (# + 4^) 2(a + 46/
: is to (a-Vby, nearly.

In py'op. 11 the author shows that similar properties take
place among two sets of ratios consisting each of 3 or 4 &c
continued numbers.

Prop. 12 shows that, of the powers of numbers in arith¬
metical progression, the orders of differences which become
equal, are the 2d differences in the squares, the 3d differences
in the cubes, the 4th differences in the 4th powers, &c. And
hence it is shown, how to construct all those powers by the
continual addition of their differences; as had been long before
more fully explained by Briggs.

In the next, or 13th prop, our author explains his compen¬
dious method of raising the tables of logarithms; showing how
to construct the logarithms by addition only, from the pro¬
perties contained in the 8th, 9th, and 12th props. For this
purpose, he makes use of the quantity which by division

he resolves into this infinite series ~ &c (in
injin.). Putting then a— 100, the arithmetical mean between
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the terms of the ratio -rg-g-'.-f* l> = 100000, and c successively
equal to 0-5, 1-5, 2‘5, &c, that so b — c may be respectively
equal to 9 9999'5, 99998'5, 99997 -5, &c, t!ie corresponding
means between the terms of the ratios T-g-g-g-g-g,-£££f|, £££f-|-,
&c, it is evident that will be the quotient of the 2d term
divided by the 1st, in the proportions mentioned in the Sth
and 9th propositions ; and when all of these quotients are
found, it remains then only to multiply them by the constant
3d term 43429, or rather 43429‘8, of the proportion, to pro¬
duce the logarithms of the ratios -rg^-g-l-g-, ££f£|, wn’i &c *
till > then adding these continually to 4, the logarithm
of 10000, the least number, or subtracting them from 5, the
logarithm of the highest term 100000, there will result the
logarithms of all the absolute numbers from 10000 to 100000.
Now when c = 0 5, then

p=-001,-=-000000005,°—= -0000001)00000025,°—=-000000000000000000125b bb £4

•See; therefore . — = - + -77* +o—c o ob

In like manner, if c=l‘5, then ,

and if o=25, then b—c

&c, is = •001000005000025000125,

will be =*001000015000225003375,

will be =-001000025000625015625;

&c. But instead of constructing all the values of in the
usual way of raising the powers, he directs them to be found
by addition only, as in the last proposition. Having thus
found all the values of , the author then shows, that
they may be draw-n into the constant loga¬
rithm 43429 by addition only, by the help of 1 4-3429
the annexed table of its first 9 products. 2 86853

The author then distinguishes which of the 3 130287
logarithms it maybe proper to find in this 4 173710
way, and which from their component parts. 5 217145
Of these, the logarithms of all even numbers 6 260574
need not be thus computed, being composed 7 304003
from the number 2 ; which cuts off one-half of 8 347432
the numbers: neither are those numbers to be 9 390861
computed which end in 5, because 5 is one of their factors;
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these last are of the numbers ; and the two together -J. 4-
-jiy make 4 of the whole : and of the other f, the 4 of them,
or T\ of the whole, are composed of 3; and hence | -f- -rr> or
41 of the numbers, are made up of such as are composed of
2, 3, and 5. As to the other numbers which may be com¬
posed of 7, of 11, &c; he recommends to find their logarithms
in the general way, the same as if they were incomposites,
as it is not worth while to separate them in so easy a mode of
calculation. So that of the 90 chiliads of numbers, from
10000 to 100000, only 24 chiliads are to be computed.'—
Neither indeed are all of these to be calculated from the fore¬

going series for but only a few of them in that way, and
the rest by the proportion in the 3th proposition. Thus,
having computed the logarithms of 10003 and 10013, omit¬
ting 10023, as being divisible by 3, estimate the logarithms
of 10033 and 10043, which are the 30th numbers from 10003
and 10013; and again omitting 10053, a multiple of 3, find
the logarithms of 10063 and 10073. Then by prop. 8,
As 10048, the arithmetical mean between 10033 and 10063,
to 10018, the arithmetical mean between 10003 and 10033,
so 13006, the dif. between the logs, of 10003 and 10033,
to 12967, the dif. between the logs, of 10033 and 10063.

That i

And with this our author concludes his compendium for con¬
structing the tables of logarithms.

He afterwards shows some applications and relations of the
doctrine of logarithms to geometrical figures: in order to
which, in prop. 14, he proves algebraically that, in the right-
angled hyperbola, if from the vertex, and from any other

Am

C10048)
i

£ 10108)

C 10053)
Again, As ■] 10088 [■ : 10028 : : 12992

(_10L\8)
C10068)

i

12967

12953
&c.

12940
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point, there be drawn bj, fh perpendicular

to the asymptote ah, or parallel to the other

asymptote; then wili ah : ai : : bi : fh. And,

In prop. 15, if ai = bi= 1, and Hi=a; then

Ac,FH = -—■ = 1 — a + a 1 — a 1 + a*1 + a

in infinitum, by a continued algebraic divi¬

sion, the process of which he describes, step by step, as a

thing that was new or uncommon. But that method of divi¬

sion had been taught before, by Dr. Wallis in his Opus
Arithmeticum.

Prop. 16 is this: Any given number being supposed to be

divided into innumerable small equal parts, it is required to

assign the sum of any powers of the continual sums of those

innumerable parts. For which purpose he lays down this

rule; if the next higher power of the given number, above

that power whose sum is sought, be divided by its exponent,

the quotient will be the sum of the powers sought. That is,

if n be the given number, and a one of its innumerable equal

parts, then will

a'' + (2 a) n + (3 «)■ + (4a)" &c
n” be =

N»+ '

n + r
which

theorem he demonstrates by a method of induction. And

this, it is evident, is the finding the sum of any powers of an

infinite number of arithmeticals, of which the greatest term

is a given quantity, and the least indefinitely small. It is

also remarkable, that the above expression is similar to the

rule for finding the fluent to the given fluxion of a power, as

afterwards taught by Sir I. Newton.

Mercator then applies this rule, in prop. 17, to the qua¬

drature of the hyperbola. Thus, putting ai = 1, conceive

the asymptote tp be divided from i into innumerable equaj

parts, namely ip — pq = qr = a ; then, by the 14th and 15th

ps = l - a -f a 1 - a 3 kc A .

qt = 1 - 2a + 4a* - 8a 3 &c £ But t,le area BirU ,S = the

m = 1 - 3* + 9«* - 27a 3 & c ) sum P s + </( + ru ’ wh,ch 18 =

3 — 6a + 14a 1 — 36a 3 &c, that is, equal to the number

of terms contained in the line ir, minus the sum of those
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terms, plus the sum of the squares of the same, minus the sum
of their cubes, plus the sum of the 4th powers, &c. Putting
now ia = 1, as before, and i p = 0-1 the number of terms, to
find the area bi/«; bv prop. 16 the sum of the terms will be
o-i 2
— = -005, the sum of their squares = -000333333, the sum
of their cubes -000025, the sum of the 4th powers -000002,
the sum of the 5th powers -000000166, the sum of the 6th
powers -000000014, &c. Therefore the area bi ps is = -1 —
•005 + -000333333 - -000025 + -000002 - -000000166 +
■000000014 &c = -100335347—-005025166=:-095310181 &c.

Again, putting iq = -21 the number of terms, he finds in
like manner the area bi qt = -21 — -02205 + "003087 —
•000486202 + -000081682 - -000014294 + -000002572 -
•000000472 + -000000088&C= -213171345--022550984=
•190620361 &c.

He then adds, hence it appears that, as the ratio of ai to
ap, or 1 to Tl, is half or subduplicate of the ratio of ai to

Aq, or 1 to T21, so the area Bips is here found to be half of
the area bi qt. These areas he computes to 44 places of
figures, and finds them still in the ratio of 2 to I.

The foregoing doctrine amounts to this, that if the rect¬
angle bi x it’, which in this case is expressed by ir only, be
put = a, ai being = 1, as before; then the area Bint, or the
hyperbolic logarithm of 1 -f a, or of the ratio of 1 to 1 -f- a,
will be equal to the infinite series a —q.A 2 + yA 3 —a.a 4 +^-A 5
&c; and which therefore may be considered as Mercator’s
quadrature of the hyperbola, or his general expression of an
lqqrerbolic logarithm in an infinite series. And this method
was further improved by Ur. Wallis in the Philos. Trans, for
the year 1668.

In prop. 18 Mercator compares the hyperbolic areola with
the ratiuncula of equidilferent numbers, and observes that,
the areola Bips is the measure of the ratiuncula of ai to Ap,
the areola spqt is the measure of the ratiuncula of Ap to a q,
the areola tqru is the measure of the ratiun. of a q to at, &c.

Finally, in the 19th prop, he shows how the sums of loga¬
rithms may be taken, after the manner of the sums of the

VOL. I. EE
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areohe. And hence infers, as a corollary, liow the continual
product of any given numbers in arithmetical progression
may be obtained : for the sum of the logarithms is the loga¬
rithm of the continual product. lie then remarks, that from
the premises it appears, in what manner Mersennus’s problem
may be resolved, if not geometrically, at least in figures to
any number pf places. And thus closes this ingenious tract.

In the Philos. Trans, for 1 f>68 are also given some further
illustrations of this work, by the author himself. And in va r
rious places also in a.similar manner are logarithms and hyper¬
bolic areas treated of by Lord Brouncker, Dr. Wallis, Sir I.
Newton, and many other learned persons.

Of Gregory's Exer.citationes Geomelricte.

In the same year 1668 came out Mr. James Gregory^
Lxercitationes Geometric®, in which are contained the fol¬
lowing pieces:

1, Appendicula ad veram circuli pt hyperbolae quadra-
turam:

2, N. Mercatoris quadratura hyperbolae geometrice de¬
monstrata :

3, Analogia inter lineam meridianam planisphaerii nautici
et tangentes artificiales geometrice demonstrata; sen quod
secantium naturalium additio efficiat tangentes artificiales :

4, Item, quot tangentium naturalium additio efficiat secan-
tes artificiales :

5, Quadrature conchoidis :
6, Quadrature cissoidis: et
1 , Methodus facilis et accurata componendi secantes et

tangentes artificiales.
The first of these pieces, or the Appendicula, contains some

further extension and illustration of his Vera circuli et hy¬
perbolae quadrature, occasioned by the animadversions made
on that work by the celebrated mathematician and philoso¬
pher Huygens.

In the 2d is demonstrated geometrically, the quadrature of
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the hyperbola; by which he finds a series similar to Merca¬
tor’s for the logarithm, or the hyperbolic space beyond the
first ordinate (bi, fig. pa. 416). In like manner he finds an¬
other series for the space at an equal distance within that or¬
dinate. These two series having all their terms alike, but
all the signs of the one plus, and those of the other alternately
plus and minus, by adding the two together, every other term
is cancelled, and the double of the rest denotes the sum of
both spaces. Gregory then applies these properties to the
logarithms; the conclusion from all which may be thus briefly
expressed:

since a — aa 1 + ^-a 3 — 4-a* &c = the log. of —f,

and a + -jA z + -|.a 3 + a-a 1 &c = the log. of —5—,

theref. 2a + -|a 3 + f a 5 + -fA 7 &c = the log. of
or of the ratio of 1 — a to 1 + a. Which may be accounted

Gregory’s method of making logarithms.

The remainder of this little volume is chiefly employed
about the nautical meridian, and the logarithmic tangents and
secants. It does not appear by whom, nor by what accident,
was discovered the analogy between a scale of logarithmic
tangents and Wright’s protraction of the nautical meridian
line, which consisted of the sums of the secants. It appears
however to have been first published, and introduced into the
practice of navigation, by Henry Bond, who mentions this
property in an edition of Norwood’s Epitome of Navigation,
printed about 1645 ; and he again treats of it more fully in
an edition of Gunter’s works, printed in 1653, where he
teaches, from this property, to resolve all the cases of Mer¬
cator’s sailing by the logarithmic tangents, independent of
the table of meridional parts. This analog)' had only been
found to be nearly true by trials, but not demonstrated to be
a mathematical property. Such demonstration seems to have
been first discovered by Nicholas Mercator, who, desirous of
making the most advantage of this and another concealed in¬
vention of his in navigation, by a paper in the Philos. Trans.

e e 2
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for June 4, 1666, invites the public to enter into a wager with
him, on his ability to prove the truth or falsehood of the sup¬
posed analogy. This mercenary proposal however seems not
to have been taken up by any one, and Mercator reserved bis
demonstration. The proposal however excited the attention
of mathematicians to the subject itself, and a demonstration
was not long wanting. The first was published about two
years after by Gregory, in the tract now under consideration,
and from thence and other similar properties, here demon¬
strated, he shows, in the last article, how the tables of loga¬
rithmic tangents and secants may easily be computed, from
the natural tangents and secants. The substance of which is
as follows:

Let a I be the arc of a quadrant,
extended in a right line, and let
the figure ahi be composed of the
natural tangents of every arc from
the point a, erected perpendicular
to a i at their respective points:
let ap, po, on, nm, &c, be the
very small equal parts into which the quadrant is divided,
namely, eadr-^, or of a degree ; draw pe, oc, nd, me,
&c, perpendicular to at. Then it is manifest, from what had
been demonstrated, that the figures abp, aco, &c, are the
artificial secants of the arcs ap, ao, &c, putting o for the
artificial radius. It is also manifest, that the rectangles bo,
cn, dm, ike , will be found from the multiplication of the small
part ap of the quadrant by each natural tangent. But, he
proceeds, there is a little more difficulty in measuring the
figures abp, bcx, cdv, &c; for if the first differences of the
tangents be equal, ab, bc, cd, &c, will not differ from right
lines, and then the figures abp, bcx, cdv, &c, will be right-
angled triangles, and therefore any one, as hog, will be =
4-QH x Q.G: but if the second differences be equal, the said
figures will be portions of trilineal quadratices; for example,
hqg will be a portion of a trilineal quadratix, whose axis is
parallel to «h ; ar.d each of the last differences being z, it will

\

I It llil' O JA
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be qhg =|gh x QG — T'_z x QG ; and if the 3d differences be

equal, the said figures will be portions of trilineal cubices,

and then shall qhg be equal £qh X aG— a /( 7 .i-e qh X zx qg* —

-rrrs-z’x QG 1) : when the 4th differences are equal, the said

figures are portions of trilineal quadrato-quadratices, and the

4th differences are equal to 24 times the 4th power of qg,

■divided by the cube of the latus rectum ; also when the 5th

differences are equal, the said figures are portions of trilineal

sursoiids, and the 5th differences are equal to 120 times the

sursolid of qg, divided bv the 4th power of the latus rectum;

and so on in infinitum. What has been here said of the com¬

position of artificial secants from the natural tangents, it is

remarked, may in like manner be understood of the compo¬

sition of artificial tangents, from the natural secants, accord¬

ing to what was before demonstrated. It is also observed,

that the artificial tangents and secants are computed, as above,

on the supposition that 0 is the log. of 1, and 1000000000000

the radius, and 2302585092994045624017870 the log. of 10;

but that thev mav be more easily computed, namely by ad¬

dition only, by putting of a degree =qg=ap = 1, and the

logarithm of 10 =: 7915704467897819; for by this means
•JqH X QG is = -J-QH =QH(J, and ^QH X QG — t^ZX QG = |QH —

TqZ = QI-IG, also 4;QH X QG — ^/(y^QH X Z X QG 1 — * QG 3)

= iQH— ^/(t^qhx z-ttVs- 2 *) = QHG : -And finally, by one

division only are found the artificial tangents and secants to

1000000000000000, the logarithm of 10, putting still 1 for

radius, which are the differences of the artificial tangents and

secants, in the table, from that artificial radius; and to make

the operations easier in multiplying by the number

7915704467897819, or logarithm of 10, atable is set down of

its products by the first 9 figures. But if ap or qg be = T j T

of a degree, the artificial tangents and secants will answer to

13192840779829703 as the logarithm of 10, the first 9 mul¬

tiples of which are also placed in the table. But to represent

the numbers by the artificial radius, rather than by the loga¬

rithm of 10, the author directs to add ciphers, &c.—And so

much for Gregory’s Exercitationes Geometries?.
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The same analogy between the logarithmic tangents and
the meridian line, as also other similar properties, were after-
wards more elegantly demonstrated by Dr. Halley in the
Philos. Trans, for Feb. 1696, and various methods given for
computing the same, by examining the nature of the spirals
into which the rhumbs are transformed in the stereographical
projection of the sphere, on the plane of the equator: the.
doctrine of which was rendered still more easy and elegant
by the ingenious Mr. Cotes, in his Logometria, first printed
in the Philos. Trans, for 1714, and afterwards in the collec¬
tion of his works published in 1732, by his cousin Dr. Robert
Smith, who succeeded him in the Plumian professorship of
philosophy in the University of Cambridge.

The learned Dr. Isaac Barrow also, in bis Lectiones Geo-
inetricse, lect. xi. Append, first, published in 1672, delivers a
similar property, namely, that the sum of all the secants of
any arc is analogous to the logarithm of the ratio of r + s to
r — s, or radius plus sine to radius minus sine; or, which is
the same thing, that the meridional parts answering to any
degree of latitude, are as the logarithms of the ratios of the
versed sines of the distances from the two poles.

Mr. Gregory’s method for making logarithms was further
exemplified in numbers, in a small tract on this subject,
printed in 1688, by one Euclid Speidell, a simple and illiterate
person, and son of John Speidell, before mentioned among
the first writers on logarithms.

Gregory also invented many other infinite series, and among
them these here following, viz. a being an arc, t its tangent,
and s the secant, to the radius r ; then is

And if t and <r denote the artificial or logarithmic tangent and
secant of the same arc a, the whole quadrant being q > and
e = 2a — g; then is

2835r 8
277a 8

8064r 7

&C

&C.
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e = r

<r =— 4-
2 r —

T3
f

T5 6 It'
+

277t’
24r* 5040r® 72576r*

e3
+

e5
+

Gle 7
+

277e’
6r a 24? 4 5040r ti 72576r 8
a4

+
a6

+
H«s.

+
62a'°

12r3 4 2520?- 7 28350r’

■ &C.

&c.

&c.

And if s denote the artificial secant of 45°, and s + l the arti¬

ficial secant of any arc a, the artificial radius being 0; then is

a =iQ + l -h~--r&c.11 ' r 1 3r* 3r3 r 3?4 45r 3

The investigation of all which series may be seen at pa. 29S

et seq. vol. 1, Dr. Horsley’s commentary on Sir I. Newton’s

works, as they were given in the Commercium Epistolicum,

no. xx, without demonstration, and where the number 2 is

also wanting in the denominator of the first term of the series

expressing the value of <r.
Such then were the ways in which Mercator and Gregory

applied these their very simple series a — ±a.z -f- yA 3 — ^A 4 &c,
and A-|—|A i -|-yA 3-)-yA 4&e, for the purpose of computing loga¬
rithms. But they might, as I apprehend, have applied them
to this purpose in a shorter and more direct manner, by com¬
puting, by their means, only a few logarithms of small ratios,
in which the terms of the series would have decreased by the
powers of 10, or some greater number, the numerators of all
the terms being unity, and their denominators the powers of
10 or some greater number, and then employing these few
logarithms, so computed, to the finding the logarithms of
other and greater ratios, by the easy operations of mere ad¬
dition and subtraction. This might have been done for the
logarithms of the ratios*of the first ten numbers, 2, 3, 4, 5,
6,7, 8, 9, 10, and 1 1, to 1, in the following manner, com¬
municated by Mr. Baron Maseres.

In the first place, the logarithm of the ratio of 10 to 9, or

—jAy, is equal to the series

j__ |l -1- 1— -I-1-& c~ 2 x 100 ' 3 x 1000 1 4x 10000 1 5 x 100000

In like manner are easily found the logarithms of the ratios
of 11 to 10 ; and then, by the same series, those of 121 to
120, and of 81 to 80, and of 2401 to 2400; in all which cases

of 1 to -jSjj, or of 1 to 1l
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the series would converge still faster than in the two first
cases. We may then proceed by mere addition and subtrac¬
tion of logarithms, as follows;

Log. y = L. i-J- + L. L. 1 o
T .-i11

V° + L.
9

L. =2L. y, I,. 8 i
IT

= 2L. 9

T 121 - T I 2 I
i -J‘ To — -JT

*4"L. L. 8 o
tt

= L. St T
Tb

s t

T 120 — T I 21
-$-o - -L" T o-

_ T I 2 I
TTo)

L. 5
T

= L. S o

L. ”° = L. 1, L. 5
T

= L. I 0
T 9

L. | =2L. i, L. 2
T = L. * - L.

5
•y*

Having thus got the logarithm of the ratio of 2 to 1, or, in
common language, the logarithm of 2, the logarithms ol all
sorts of even numbers maybe derived from those of the odd
numbers, which are their coefficients, with 2 or its powers.
We may then proceed as follows :

L. 4 =2L. 2, L. 24 = L. 8 + L. 3,
L. 10 = L. >T° ■f L. 4, L.2400 = L. 100 + L. 24,
L. 9 = L. | + L. 4, L.2401 = L. £$&£ + L.2400
L. 3 —-fL. 9, L. 7=*L. 2401,
L. 100 =2L. 10, L. 11 = L. V b L. 9,
L. 8 =3L. 2, L. 6 = L. 2 -1- L. 3.

Thus we have got the logarithms of 2, 3, 4, 5, 6, 7, 8, 9, 10,
and 11. And this is, upon the whole, perhaps the best me¬
thod of computing logarithms that can be taken. There have
been indeed some methods discovered by Dr. Halley, and
other mathematicians, for computing the logarithms of the
ratios of prime numbers, to the next adjacent even numbers,
which are still shorter than the application of the foregoing
series. But those methods are less simple and easy to under¬
stand, and apply, than these series; and the computation of
logarithms by these series, ■when their terms decrease by the
powers of 10, or of some greater number, is so very short
and easy (as we have seen in the foregoing computations of
the logarithms of the ratios of 10 to 9, 11 to 10, 81 to 80,
121 to 120, &c,) that it is not worth while to seek for any
shorter methods of computing them. And this method of
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computing logarithms is very nearly the same with that of

Sir I. Newton, in his second letter to Mr. Oldenburg, dated

October 1676, as will be seen in the following article.

The excellent Sir I. Newton greatly improved the quadra¬

ture of the hyperbolical-asymptotic spaces bv infinite series,

derived from the general quadrature of curves by his method

of fluxions; or rather indeed he invented that method him¬

self, and the construction of logarithms derived from it, in the

year 1665 or 1666, before the publication of either Mercator’s

or Gregory’s books, as appears by his letter to Mr. Olden¬

burg dated October 24, 1676, printed in p. 634 etseq. vol. 3,

of Wallis’s works, and elsewhere. The

interposed square cafe=1. In ca take ab

and Ab on each side = ^ or 0'1 : And, G J .A JB

erecting the perpendiculars bd, bd; half the sum of the spaces

Which reduced will stand thus,
1-1)000000000000,0-0050000000000 The sum of these 0-1053605156577 is Ail,

0-1003353477310,0 0050251679267

Having thus the hyperbolic logarithms of the four decimal

0-8 and 0 -9 are less than unity; adding their logarithms to

double the logarithm of V2, we have 0'6931471805597, the

hyperbolic logarithm of 2. To the triple of this adding the

Of Sir Isaac Newton's Methods.

quadrature of the hyperbola, thence trans¬

lated, is to this effect. Let dm be an hy¬

perbola, whose centre is c, vertex f, and

AD and a d will be = CM + —~ o-ououi 0-0000001 0
—--&c,

i j i i,» i •/r» __ 0*01 0*0001
and the halt diff. r=-1- 2 1 4 L —6 — +

0000001 0-00000001

3333333333
20000000

250000000 and the differ. 0-0953101798043 is AD.

142857
1111

1666666 In like manner, putting AB and Ab
12500 each = 0-2, there is obtained

9
100 Ad = 0-2231435513142, and

1 AD = 0-1823215567939.

numbers 0 -8, 0-9, l'l, and 1*2; and since x ^ — 2, and

log. of 08, because —^—= 10, wehave2'3025850929933,

2x2x2
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the logarithm of 10. Hence by one addition are found the

logarithms of 9 and 11 : And thus the logarithms of all these

prime numbers, 2, 3, 5, 11 are prepared. Further, by only

depressing the numbers, above computed, lower in the deci¬

mal places, and adding, are obtained the logarithms of the

decimals 0-98,0-99, 1-01, l -02; as also of these 0-998, 0 -999,

1-001, 1'002. And hence, by addition and subtraction, will

arise the logarithms of the primes 7, 13, 17, 37, &c. All which

logarithms being divided by the above logarithm of 10, give

the common logarithms to be inserted in the table.

And again, a few pages further on, in the same letter, he

resumes the construction of logarithms, thus: Having found,

as above, the hyperbolic logarithms of 10, 0"98, 0-99, 1-01,

1-02, which may be effected in an hour or two, dividing the

last four logarithms by the logarithm of 10, and adding the

index 2, we have the tabular logarithms of 98, 99, 100, 101,

102. Then, by interpolating nine means between each of

these, will be obtained the logarithms of all numbers between

980 and 1020; and again interpolating 9 means between every

two numbers from 980 to 1000, the table will be so far con¬

structed. Then from these will be collected the logarithms

of all the primes under 100, together with those of their mul¬

tiples: all which will require only addition and subtraction; for
102

= 13 — 17;

37-® 8- 4 -41--31 ’ -24 -* 1 ’

, 9984 x 1020
*V- =2 ;9945 - ’ 2 “ ’ ^ 2

4x 13~ 1J ’ 16x27 — ^ ’
987

— 4.7- 11 x

10 . .96 _ 99 , ,— °> */ o' — 7 ; — — 11 ;
tool

9i?- 43 . —_ 47 .
23 27- 4/ ’

9 ’7x11

992 999

32 ° ’ 27 ~
9911 9971 9882

T7 = 53 ‘T?Ti3= o9; 578l= 61

2x1' =29;

994_ _9928 _
14 — ^ J8 x 17 "

73;
9954 _

7~x~18" :79;^ 6 = 83;

9849

3x49
9894

^■ = 89:7x16 -6x17

= 67;

= 97.

This quadrature of the hyperbola, and its application to

the construction of logarithms, are still further explained by

our celebrated author, in bis treatise on Fluxions, published

bv Mr. Colson in 1736, where be sivesall the three series for

the areas ad, a d, b d, in general terms, the former the same

as that published by Mercator, and the latter by Gregory;

and he explains the manner of deriving the latter series from

the former, namely by uniting together the two series for the
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spaces on each side of an ordinate, bounded by other ordi¬
nates at equal distances, every 2d term of each series is can¬
celled, and the result is a series converging much quicker than
either of the former. And, in this treatise on fluxions, as well
as in the letter before quoted, he recommends this as the most
convenient way of raising a canon of logs, computing by the
series the hyperbolic spaces answering to the prime numbers
2, 3, 5, 7, 11, See, and dividing them by 2 -3025850929940457,
which is the area corresponding to the number 10, or else
multiplying them by its reciprocal 0'4342944819032518, for
the common logarithms. “ Then the logarithms of all the
numbers in the canon which are made by the multiplication
of these, are to be found by .the addition of their logarithms,
as is usual. And the void places are to be interpolated after¬
wards by the help of this theorem: Let n be a number to which
a logarithm is to be adapted, x the difference between that
and the two nearest numbers equally distant on each side,
whose logarithms are already found, and letc/ be half the dif¬
ference of the logarithms; then the required logarithm of the
number n will be obtained by adding d + &c to

the logarithm of the less number.” This theorem he demon¬
strates by the hyperbolic areas, and then proceeds thus ;
“ The two first terms d + — of this series I think to be ac-

curate enough for the construction of a canon of logarithms,
even though they were to be produced to 14 or 15 figures;'
provided the number whose logarithm is to be found be not
less than 1000. And this can give little trouble in the calcu¬
lation, because x is generally an unit, or the numbers. Yet
it is not necessary to interpolate, all the places by the help of
this rule. For the logarithms of numbers which are produced
by the multiplication or division of the number last found,
may be obtained by the numbers whose logarithms were had
before, by the addition or subtraction of their logarithms.—
Moreover, by the differences of the logarithms, and by their
2d and 3d differences, if there be occasion, the void places
maybe more expeditiously supplied; the foregoing rule being
to be applied only when the continuation of some full places
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is wanted, in order to obtain those differences, &c.” So that
Sir I. Newton of himself discovered all the series for the above
quadrature, which were found out, and afterwards published,
partly by Mercator and partly by Gregory; and these we may
here exhibit in one view all together, and that in a general
manner for any hyperbola, namely putting ca = a, af = b,
and ab ~a b = x : then will bd = and bd = whence

a + x a —x
the areas are as below, viz.

AD
» bx* bi 3
bx --4- 2a ^ 3a*

bx* bx$ n

35 + 55 &C -
7 k , bx* bx3 bx* , bx5 o

Ad — bx + — + t-h r-7 &c.Q.a 3a 2 4cr3 5a 4

, . 2bx* 2fix 7 , 2i.r 9 0Ba = 2^r -f -—k--h TTT &C.
1 3«* 1 5a 4 ~ 7a 6 9a B

In the same letter also, above quoted, to.Mr. Oldenburg,
our illustrious author teaches a method of constructing the
trigonometrical canon of sines, by an easier method of mul¬
tiple angles than that before delivered by Briggs, for the same
purpose, because that in Sir Isaac’s way radius or I is the first
term, and double the sine or cosine of the first given angle is
the 2d term, of all the proportions, by which the several suc¬
cessive multiple sines or cosines are found. The substance
of the method is thus : The best foundation for the construc¬
tion of the table of sines, is the continual addition of a given
angle to itself, or to another given angle. As, if the angle a
be to be added ;

& o. «L V NY 1*

inscribe hi, ik, kl, lm, mn, no, op, &c, each equal to the
radius ab; and to the opposite sides draw the perpendiculars
be, hq, ir, ks, LT, mv, NX, oy, &c ; so shall the angle A be
the common difference of the angles hiq, ikh, kli, lmic, &c;
their sines Ha, ir, ks, &e; and their cosines ia, kr, ls, &c.
Now let any one of them lmk, be given, then the rest will be
thus found : Draw t a and k b perpendicular to sv and Mf;
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now because of the equiangular triangles abe, tl a, km b,

ALT, AMV, &C, it wiil be AB : AE : : KT : SCI (=£LV + -£Ls) : :

lt : T a (=4-mv+^ks,) and AB : BE :: LT : L£i (=£LS — alv)

:: kt ( =-|km) : £M b (=|mv-aks.) Hence are given the

sines and cosines ks, mv, ls, lv. And the method of conti¬

nuing the progressions is evident. Namely,

( lv : mt + MX :: MX : NV + ny &c,
as AB : 2AE : : , , Sr

t MV : NX + LT : : NX : OY + MV &C,

LV : NX — LT : : MX : OY — MV &c,

MV : MT — MX : : NX : NV — NY &c.

And, on the other hand, ab : 2ae :: ls : kt + kr &c.
Therefore put ab = 1, and make be x lt = l«, aex kt = S«,
Sa — La — LV, 2 AE X LV —TM = MX, &C.

The sense of these general theorems is this, that if p be any
one among a series of angles in arithmetical progression, the
angle cl being their common difference, then as radius or

1 : 2 cos. cl : : * C0S ’ P ' C0S ‘ P + d + C0S ‘ P ~ d >) sin. p : sin. p + cl -f- sin. p — cl,
1 : 2 sin. d:: f cos ' P : sin ‘ P + d ~ sin - V ~ d>

\ sin. p : cos. p + d■— cos. p — d;

where the 4th terms of these proportions are the sums or dif¬
ferences of the sines or cosines of the two ancdes next less andO
greater than any angle p in the series ; and therefore, sub¬
tracting the Jess extreme from the sum, or adding it to the
difference, the result will be the greater extreme, or the next
sine or cosine beyond that of the term p. And in the same
manner are all the rest to be found. This method, it is evi¬
dent, is equally applicable, whether the common difference
d, or angle a, be equal to one term of the series or not: when
it is one of the terms, then the whole series of sines and co¬
sines becomes thus, viz, as 1 : 2 cos. cl ::
6in. d : sin. 2d :: sin. 2d: sin. rf + sin. : : sin. 3d : sin. 2</+sin. 4d &c.
cos- d: 1 + cos- 2d :: cos. 2d : cos. tf+cos. 3d:: cos. 3d : cos. 2d+ cos. 4d &c.

which is the very method contained in the directions given by
Abraham Sharp, for constructing the canon of sines.

Sir I. Newton remarks, that it only remains to find the sine
and cosine of a first angle a, by some other method; and for

or ab : 2be
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this purpose, he directs to make use of some of his own infi¬
nite series: thus, by them will be found 1 '57079&C for the
quadrantal arc, the square of which is 2*4694&c ; divide this
square by the square of the number expressing the ratio of
90 degrees to the angle a, calling the quotient z; then 3 or

4 terms of this series 1 - | + f’ - 4 + «iio &c > wil1 S ive
the cosine of that angle a. Thus we may first find an angle
of 5 degrees, and thence the table be computed to the series
of every 5 degrees ; then these interpolated to degrees or
half degrees by the same method, and these interpolated
again; and so on as far as necessary. But two-thirds of the
table being computed in this manner, the remaining third will
be found by addition or subtraction only, as is well known.

Various other improvements in logarithms and trigonome¬
try are owing to the same excellent personage ; such as, the
series for expressing the relation between circular arcs and
their sines, cosines, versed-sines, tangents, &c ; namely, the
arc being a, the sine s, the versed-sinew, cosine c, tangent t,
radius 1, then is

+ &c.a = s + I v3 + _L
4 0° '

5 c7
TTi 6 +I 3 5 7

a = V* + + 4^ + +

a = t
-

■jp +
¥ s ~ ¥ 7

+

s = a —
i a *

+ rip® 5 — 1 rfl•5o?o“ +

c = 1 —
■K + tV* 4 “ i rfi

'7HToa +

V = +
yi-o a6 ~

I «8
T +

t a + + TS« S + TTT 0,7
+

+ &c.

Torro a — &c

TeTa s 8 o o

•5TT*3 fl9 + & c *

Of Dr. Halley's Method.

Many other improvements in the construction of loga¬
rithms are also derived from the same doctrine of fluxions, as

Ave shall show hereafter. In the mean time proceed we to
the ingenious method of the learned Dr. Edmund Halley,
secretary to the Royal Society, and the second astronomer
royal, having succeeded Mr. Flamsteed in that honourable
office in the year 1719, at the Royal Observatory at Green-

Avich, Avhere he died the 14th January 1742, in the 86th year
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of his age. His method was first printed in the Philosophical
Transactions for the year 1695, and it is entitled “ A most
compendious and facile method for constructing the loga¬
rithms, exemplified and demonstrated from the nature of
pumbers, without any regard to the hyperbola, with a speedy
method for finding the number from the given logarithm.”

Instead of the more ordinary definition of logarithms, as

mmerorum pi'oportionalium aquidifferentes comites, in this
tract our learned author adopts this other, numeri ralionem

c.vponenles, as being better adapted to the principle on which
logarithms arc here constructed, where those quantities are
not considered as the logarithms of the numbers, for example,
of 2, or of 3, or of 10, but as the logarithms of the ratios of
1 to 2, or 1 to 3, or 1 to 10. In this consideration he first
pursues the idea of Kepler and Mercator, remarking that any
such ratio is proportional to, and is measured by, the number
of equal ratiunculoe contained in each ; which ratiunculoe are
to be understood as in a continued scale of proportionals, in¬
finite in number, between the two terms of the ratio; which
infinite number of mean proportionals, is to that infinite
number of the like and equal ratiunculte between any other
two terms, as the logarithm of the one ratio, is to the loga¬
rithm of the other : thus, if there be supposed between 1 and
10 an infinite scale of mean proportionals, whose number is
100000 &c in infinitum ; then between 1 and 2 there will be
30102 &c of such proportionals ; and between 1 and 3 there
•will be 47712 &c of them ; which numbers therefore are the
logarithms of the ratios of 1 to 10, 1 to 2, and 1 to 3. But
for the sake of his mode of constructing logarithms, he changes
this idea of equal ratiunculoe, for that of other ratiunculoe, so
constituted, as that the same infinite number of them shall be
contained in the ratio of 1 to every other number whatever;
and that therefore these latter ratiunculoe will be of unequal
or different magnitudes in all the different ratios, and in such
sort, that in any one ratio, the magnitude of each of the ra¬
tiunculoe in this latter case, will be as the number of them in
the former. And therefore, if between 1 and any number
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proposed, there be taken any infinity of mean proportionals,

the infinitely small augment or decrement of the first of those

means from the first term 1, will be a ratiuncula of the ratio

of 1 to the said number; and as the number of all the ratiun-

culas in these continued proportionals is the same, their sum,

or the whole ratio, will be directly proportional to the mag¬
nitude of one of the said ratiuncula: in each ratio. But it is

also evident that the first of any number of means, between

1 and any number, is always equal to such root of that num¬

ber, whose index is expressed by the number of those pro¬

portionals from 1 : so, i I’m denote the number of proportionals

from 1, then the first term after 1 will be the with root of that

number. Hence, the indefinite root of any number being ex¬

tracted, the diflferentiola of the said root from unity, shall be

as the logarithm of that number. So if there be required the

log. of the ratio of 1 to 1 + q ; the first term after 1 will be

(1 + q) m , and theref. the required log. wil
. 1.1 1 —m

But, (1 -f (])"• is = 1 q- q |-. ——y 2 1-7 ' 2 ' m.J- m 2m. 1 m

be as (1 -f q) m — I.1 1— m 1 —2m

&c; or by omitting the l in the compound numerators, as

infinitely small in respect of the infinite number m, the same

series will become 1 -f- — q q z q- — . . ^^<7 3

&c, or by abbreviation it is 1 +— q —-o ! -I- — o 3 — ^- 7 4 &c:

and hence, finding the differentiola by subtracting 1, the lo¬

garithm of the ratio of 1 to 1 + q is as — x (g — -\q~ + ^ q 3 —

+ i q 5 — i? 6 &c.) Now the index m may be taken equal

to any infinite number, and thus all the varieties of scales of

logarithms may be produced: so, if m be taken 1000000&C,

the theorem will give Napier’s logarithms; but if m be taken

equal to 230258&C, there will arise Briggs’s logarithms.

This theorem being for the increasing ratio of 1 to 1 + q :

if that for the decreasing ratio of 1 to 1 — q be also sought, it

will be obtained by a proper change of the signs, by which

the decrement of the first of the infinite number of propor¬

tionals, will be found to be into q -f- \q z ■+- y</ 3 + Ay 4 &c,

which therefore is as the logarithm of the ratio of 1 to 1—
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b —alienee tlie terms of any ratio being a and b, q becomes

r the difference divided by the less term, when it is an

increasing ratio ; or q =~~ when the ratio is decreasing, or

as b to a. Therefore the logarithm of the same ratio may be

doubly expressed; for, putting x for the difference b — a 0 f
the terms, it will be

either — into — — + fi _ fl + & c .2a 2 n 3n3 4a 4 T

— into — + — +m b 1 24* 1

a-3 . .t4 „

343 + W + &C -

be

and — into +m s 2s 2 T
1 . 2* , 2:i3

or — into-b — 4in. * 1 3*3 1

But if the ratio of a to b be supposed divided into two parts,

namely, into the ratio of a to \a + ^b or -j-z, and the ratio of

■Jz to b, then will the sum of the logarithms of those two ratios

be the logarithm of the ratio of a to b. Now by substituting

in the foregoing series, the logarithms of those two ratios will
1 . x a’ x3 14 j:5 „

m nlt ° 7' + 2? + 3iJ + ,4T4 + 5 ? &C>

1 ’ ’ 1 x ^ ^ ~ &c; and hence the sum,
2lS , 2x7 2x 9 , n

3Z3 ■ + w + k? + &C >

will be the logarithm of the ratio of a to b.

Further, if from the logarithm of the ratio of a to {z, be

taken that of \z to b, we shall have the logarithm of the ratio

of ab to iz ! ; and the half of this gives that of 7 ab to -‘-z, or

of the geometrical mean to the arithmetical mean. And con¬

sequently the logarithm of this ratio will be equal to half the

difference of that of the above two ratios, and will therefore
4- &c.j4

be — into -—b tw + tt- +m 2s a 42* 6s1f> ‘ 8z8

The above series are similar to some that were before given

by Newton and Gregory, for the same purpose, deduced from

the consideration of the hyperbola. But the rule which is

properly our author’s own, is that wdiich follows, and is de¬

rived from the series above given for the logarithm of the

sum of two ratios. For the ratio of ab to ->-za OT- 14 ciL -\--(ab-\-j i b z,

having the difference of its terms -\c?—{ab 4 -"-A1 or {^b — ^a) 2

or 4-r% which in the case of finding the logs, of prime num¬

bers is always 1, if we call the sum of the terms yz 2 4 ab = y 1.
VOL. I. F F
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the Jog. of the ra. of ^ab to b or -iz will be found to be
l* l. l i l' i 1 ,i , „- 1Ilt0 7/ + ^ + 57° + w + W* + &C>

And these rules our learned author exemplifies by some

cases in numbers, to show the easiest inode of application in

practice.

Again,, by means of the same binomial theorem he resolves,

with equal facility, the reverse of the problem, namely, from

the log. given, to find its number or ratio: ior, as the log.

of the ratio of 1 to 1 + q was proved to be (1 + q) m — 1, and

that of the ratio of 1 to 1 — q to be 1 — (1 — q)'" ; hence,

calling the given logarithm I., in the former

case it will be (1 +<7)'" = 1 + l,

and in the latter (1 — q) m — 1 — l ;

and therefore 1 + q = (1 + l)”'"? that is,, by the binomial

and 1 — q = (1 — i) m $ theorem,

1 -p q — 1 + m l + \nf if + ^m 3 l 3 -f l 4 +l s &c,

and 1. + Inf if - 3 if + *V” 4 ~ t-£ c mS l 5

on being any infinite index whatever, differing according to

the scale of logarithms, being lOOO&c in Napier’s or the hy¬

perbolic logarithms, and 23025 S 5 &C in Briggs’s.

If one term of the ratio, of which l is the logarithm, be

given, the other term will be easily obtained by the same

rule: For if l be Napier’s logarithm, of the ratio of a the

less term, to b the greater, then, according as a or b is given,

we shall have,
b — a into 1 + l + \if -f- -if + tV 1,4 +
a = b into 1 — l + .^r, 1 — |l 3 + -^l 4 — &c.

Hence, by help of the logarithms contained in the tables, may

easily be found the number to any given log. to a great extent,

For if the small difference between the given log. l and the

nearest tabular logarithm, either greater or less, be called l,

and the number answering to the tabular logarithm a , when

it is less than the given logarithm, but b when greater; it

will follow, that the number answering to the log. l, will be

either a into 1 + / + -‘-/2 + ^l 3 + f T l'‘ + r -^l s + &c,

or b into 1 - / + 13 + -^Z 4 - T ^/ 5 + &c,
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which series converge so quickly, l being always very small,

that the first two terms 1 ± l are generally sufficient to find

the number to 10 places of figures.

Dr. Halley subjoins also an easy approximation for these

series; by which it appears, that the number answering to

the log. is nearly y-~x « or |—q x b in Napier’s logs.; andn + P n—H 1 1

x a or —|j x b in Briggs’s logarithms; where n is =

434294481903 &e = —.m

Of Mr. Sharp's Methods.

The labours of Mr. Abraham Sharp, of Little-Horton, near

Bradf ord in Yorkshire, in this branch of mathematics, were

very great and meritorious. His merit however consisted

rather in the improvement and illustration of the methods of

former writers, than in the invention of any new ones of his

own. In this way he greatly extended and improved Dr.

Halley’s method, above described, as also those of Mercator

and Wallis; illustrating these improvements by extensive

calculations, and by them computing table 5 of my collection

of Mathematical Tables, consisting of the logarithms of all

numbers to 100, and of all prime numbers to 1100, each to

61 places. He also composed a neat compendium of the best

methods for computing the natural sines, tangents, and se¬

cants, chiefly from the rules before given by Newton; and

by Newton’s or Gregory’s series a = t — ft 3 + j-ts — j.t 7 &c,

for the arc in terms of the tangent, he computed the circum¬

ference of the circle to 72 places, namely from the arc of 30

degrees, whose tangent t is = Vj- to the radius 1. Other

surprizing instances of his industry and labour appear in his

Geometry Improv’d, printed in 1717, and signed A. S. Philo¬

math, from which the 5th table of logarithms above-mentioned

was extracted. This ingenious man was sometime assistant

at the Royal Observatory to Mr. Flamsteed the first astrono¬

mer royal; and, being one of the most accurate and inde¬

fatigable computers that ever existed, he was for many years
F F 2
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the common resource for Mr. Flamsteed, Sir Jonas Moore,

Dr. Halley, &c, in all intricate and troublesome calculations.

He afterwards retired to liis native place at Little-Horton,

where, after a life spent in intense study and calculations, lie

died the 18th July 1742, in the 91st year of his age.

0/ the Construction of Logarithms by Fluxions.

It appears by the very definition and description given by

Napier of his logarithms, as stated in page 341 of this voh

that the fluxion of his, or the hyperbolic logarithm, of any

number, is a fourth proportional to that number, its loga¬

rithm, and unity; or, which is the same thing, that it is equal

to the fluxion of the number divided by the number: For the

description shows, that z\ : za or 1 :: zl the fluxion oiza:za,

which therefore is = ; but za is also equal to the fluxion

of the logarithm a&c, by the description ; therefore the flux¬

ion of the logarithm is equal to the fluxion of the quantity

divided by the quantity itself. The same thing appears again

at art. 2 of that little piece, in the appendix to his Constructio

Lo^arithmoruin, entitled Flabitudines Logarithmorum et,

suorum naturalium numerontm invicem, where he observes

that, as any greater quantity is to. a less, so is the velocity of

the increment or decrement of the logarithms at the place of

the less quantity 7, to that at the greater. Now this velocity

©f the increment or decrement of the logarithms being the

same thing as their fluxions, that proportion is this, x : a : :

flux. log. a : flux. log. x ; hence if a be = 1, as at the begin¬

ning of the table of numbers, where the fluxion of the logs,

is the index or characteristic c, which is also 1 in Napier’s or

the hyperbolic logarithms, and 43429&C in Briggs’s, the same

proportion becomes x : 1 : : c ; flux. log. x ; but the con¬

stant fluxion of the numbers is also 1, and therefore that pro¬

portion is also this, x : x :: c : CL — the fluxion of the log. of

x ; and in the hy* perbolic logs, where c is = 1, it becomes

L- = the fluxion of Napier’s or the hyperbolic logarithm of.’
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x. This same property has also been noticed by many other

authors since Napier’s time. And the same, or a similar pro¬

perty, is evidently true in all systems of logarithms whatever,

namely, that the modulus of the system is to any number, as

the fluxion of its logarithm is to the fluxion of the number.

Now from this property, by means of the doctrine of flux¬

ions, are derived other ways for making logarithms, which

have been illustrated by many writers on this branch, as Craig,

John Bernoulli, and almost all the writers on fluxions. And

this method chiefly consists in expanding the reciprocal of

the given quantity in an infinite series, then multiplj’ing each

term by the fluxion of the said quantity, and lastly taking the

fluents of the-terms -, by which there arises an infinite series

of terms for the logarithm sought. So, to find the logarithm

of any number n -, put any compound quantity for n, as
71+ X

suppose —- ;

then Lite flux, of the log. or - being—^=- —-f — _—f&c,

the fluents give log. of n or log. of &c.b ° a n n 2-ifi 3713 477.4
, , . • c 1 n—x X x- H 3 371 5

And writing — x ror x gives log.-— —- — —— —— . .etc.° b b 71 71 ‘2 n? 3 7:3 47i->

Also, because — 1 —
1 71 _ 1 71_L. x

or log.—-— = 0 — Jog.-° 1I±X ° n
,i r] n x xi , x+ o
therer. W.-=-u —-{- — &c,^ ti + x 7i '■2/t'2 3« 3 4?4*

ii n , x . x 2 , as , x+ o
and loo;. —~ — H—* “f* t—, “f* ~—: -4~ t \ &C.^ 7i—x n 3743 4?i4

And by adding and subtracting any of these series, to or

from one another, and multiplying or dividing their corre¬

sponding numbers, various other series for logarithms may

be found, converging much quicker than these do.

In like manner, by assuming quantities otherwise com¬

pounded, for the value of N, various other forms of logarith¬

mic scries may be found by the same means.

Of Mr. Coles's Logomctria.

Mr. Roger Cotes was elected the first Plumian professor of

astronomy and experimental philosophy in the university of
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Cambridge, January 1706, which appointment he filled with

the greatest credit, till he died the 5th of June 1716, in the

prime of life, having not quite completed the 34th year of

his age. His early death was a great loss to the mathemati¬

cal world, as his genius and abilities were of the brightest

order, as is manifest by the specimens of his performance

given to the public. Among these is, his Logomctria, first

printed in number 338 of the Philosophical Transactions, and

afterwards in his Harmonia Mcnsurarum, published in 1722,

with his other works, by bis relation and successor, in the

Plumian professorship, P)r. Robert Smith. In this piece he

first treats, in a general way, of measures of ratios, which

measures, he observes, are quantities of any kind, whose mag¬

nitudes are analogous to the magnitudes of the ratios, these

magnitudes mutually increasing ami decreasing together in

the same proportion. He remarks, that the ratio of equality

has no magnitude, because it produces no change by adding

and subtracting ; that the ratios of greater and less inequality,

are of different affections; and therefore if the measure of the

one of these be considered as positive, that of the other will be

negative ; and the measure of the ratio of equality nothing ;

That there are endless systems of these, which have all their

measures of the same ratios proportional to certain given

quantities, called moduli, which he defines afterwards, and the

ratio of which they are the measures, each in its peculiar sys¬

tem, is called the modular ratio, ratio modularis, which ratio

is the same in all systems. He then adverts to logarithms,

which he considers as the numerical measures of ratios, and

he describes the method of arranging them in tables, with

their uses in multiplication and division, raising of powers and

extracting of roots, by means of the corresponding operations

of addition and subtraction, multiplication and division.

After this introduction, which is onty a slight abridgment

of the doctrine long before very amply treated of by others,

and particularly by Kepler and Mercator, we arrive at the

first proposition, which has justly been censured as obscure

and imperfect, seemingly through an affectation of brevity.
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intricacy, and originality, without sufficient room for a dis¬

play of this quality. The reasoning in this proposition, such

as it is, seems to be something between that of Kepler and the

principles of fluxions, to which the quantities and expressions

are nearly allied. However, as it is my duty rather to nar¬

rate than explain. I shall here exhibit it exactly as it stands.

This proposition is, to determine the measure of any ratio, as

for instance that of ac to ab, and which is effected in this

manner: Conceive the differ¬

ence BC to be divided into ,--——- -g

innumerable very small par¬

ticles, as pq, and the ratio between ac and ab into as many

such very small ratios, as between aq and ap: then if the

magnitude of the ratio between a<a and ap be given, by divid¬

ing, there will also be given that of pq to ap ; and therefore,

this being given, the magnitude of the ratio between aq. and

AP may be expounded by the given quantity for, ap re¬

maining constant, conceive the particle pq to be augmented

or diminished in any proportion, and in the same proportion

will the magnitude of the ratio between aq and ap be aug¬

mented or diminished : Also, talcing any determinate quan¬

tity m, the same may be expounded by m x and therefore

the quantity mx ^ will be the measure of the ratio between

aq and ap. And this measure will have'divers magnitudes,

and be accommodated to divers systems, according to the

divers magnitudes of the assumed quantity m, which therefore

is called the modulus of the system. Now, like as the sum of

all the ratios aq to ap is equal to the proposed ratio ac to ab,

so the sum of all the measures m x —, found by the knownAP7 J

methods, will be. equal to the required measure of the said

proposed ratio.

The general solution being thus dispatched, from the ge¬

neral expression, Cotes next deduces other forms of the

measure, in several corollaries and scholia: as 1st, the. terms

ap, aq, approach the nearer to equality as the small differ-
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ence pa is less ; so that either m x — or m x ~ will be the
AP A2

measure of the ratio between AQ. and ap, to the modulus M.
2d, That hence the mod ulus m, is to the measure of the
ratio between aq and ap, as either ap or as is to their dif¬
ference pq. 3d, The ratio between ac and ab being given, the
sum of all the — will be given ; and the sum of all the m x —

is as m : therefore the measure of any given ratio, is as the
modulus of the system from which it is taken. 4th, There¬
fore, in every system of measures, the modulus will always
be equal to the measure of a certain determinate and immut¬
able ratio ; which therefore he calls the modular ratio. 5,th,
To illustrate the solution by an example : let z be any deter¬
minate and permanent quantity, x a variable or indeterminate
quantity, and x its fluxion; then, to find the measure of
the ratio between s+ x and z — x, put this ratio equal to the
ratio between y and 1, expounding the number y by ap, its
fluxion y by pq, and 1 by ab : then the fluxion of the re¬

quired measure of the ratio between y and 1 is m x

Now, fory, restore its val. and for y the flux, of that val.
2zx so shall the flux, of the measure become 2 m x

or 2 m into —-f-^-p&c ; and therefore that measure will

be 2m into ~ + ^ + |^+& c - I* 1 Idee manner the measure of
the ratio between 1 -|- v and 1, will be found to be - - - -
M into v — -J- a-w3 — if 4 -f &c. And hence, to find the
number from the logarithm given, he reverts the series in this
manner : If the last measure be called m, we

shall have ™- or 1sIId iv + - i* 4 + -pu s & c,
therefore <T= - vz -

V3 +^-» 4
— &c,

and Q3 — ~ - V3 — _3_w4 + &c,
and a 4 = - - - - W4 — 2v s &c,
and Q s - - Vs &c;

then, by adding continually, we shall have,
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a + ^ — iv 3 + 4^* - U-v 5 &C5 >
a + {-<iz -1- {-a 3 = v - -2y> 4 + ts® 5 &c >
a + |cr + ia 3 + ^a 4 = v - T l-d w5 &c,
« + i-a1 + 4<i:i 4- -iV' i+ + T io« s =® &c,

that is v=. q + i a2 + _’cd 4 . + t4 s q ,; &c. And there-*
fore the required ratio of 1 » to 1 , is equal to the ’ratio of
1 + q + {a 1 &c to 1 . Now put m = m, ora = 1, and the
above will become the ratio of 1 + 4 + 1 ^ + -pro
to 1 , for the constant modular ratio. In like manner, if the
ratio between 1 and 1 — v be proposed, the measure of this
ratio will come out m into v + ^v 1 + yt >3 + &c; which
being called m, and —- = q- that ratio will be the ratio of

1 to 1 — q +-Jq'' — |a 4 +-^Q 4 8cc. And hence, taking
m = M, or a=l, the said modular ratio will also be the ratio

of 1 to 1 -^ + 4 .-^ + ^ — -j-J-o &c. And the former of
these expressions, for the modular ratio, comes out the ratio
of 2.718281828459 &c to 1, and the latter the ratio of 1 to
0.367879441171 Sec, which number is the reciprocal of the
former.

In the 2d prop, the learned author gives directions for con¬

structing Briggs’s canon of logarithms, namely, first, by the

general series 2m into 7" + + &c, finding the loga¬

rithms of a few such ratios as that of 126 to 125, 225 to 224,
2401 to 2400, 4375 to 4374, &e, from which the logarithm of
10 will be found to be 2.302585092994 &c, wdicn M is 1 ; but

since Briggs’s log. of 10 is 1, therefore as 2.302585 &c is to

the mod. l,soisl (Briggs’s log. of 10) to 0.4342941S 1903&C,

which therefore is the modulus of Briggs’s logarithms. Hence

he deduces the logarithms of 7, 5, 3, and 2. In like manner

are the logarithms of other prime numbers to be found, and

from them the logarithms of composite numbers by addition

and subtraction only.
Cotes then remarks, that the first term of the general series

2 m into — + — + -^7 + 8cc, will be sufficient for the loga-z J 2P 5s° o
rithms of intermediate numbers between those in the table,
or even for numbers beyond the limits of the table. Thus, to
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•find the logarithm answering to any intermediate number ;
let a and e be two numbers, the one the .given number, and
the other the nearest tabular number, a being the greater,
and e the less of them ; put z — a +■ e their sum, x = a — e
their difference, A = the logarithm of the ratio of a to e,
•that is the excess of the logarithm of a above that of e: so
shall the said difference .of their logarithms be A = 2m x
vcry nearly. And, if there be required the number answer-

to
■2mx

any given
MIor -

intermediate logarithm, because A
.if Art M■- there!, x =-— nr-

m + 4>.

is

, , , -- -ry nearly.
2rt— x 2e+ar m + 4>- m —4a j

In the 3d prop, the ingenious author teaches how to convert
the canon of logarithms into logarithms of any other system,
by means of their moduli. And, in several more propositions,
he exemplifies the canon of logarithms in the solution of va¬
rious important problems in geometry and physics ; such as
the quadrature of the hyperbola, the description of the logi-
stica, the equiangular spiral, the nautical meridian, &c, the
descent of bodies in resisting mediums, the density of the
atmosphere at anjr altitude, &c, Ac.

Of Dr. Taylor's Construction of Logarithms.

Dr. BrookTajdor, a very learned mathematician, and secre¬
tary to the Royal Society, who died at Somerset-house, Nov.
1131, gave the following method of constructing logarithms, in
number 352 of the Philosophical Transactions. His method is
founded on these three considerations: 1st, that the sum of
the logarithms of any two numbers, is the logarithm of the pro¬
duct of those numbers; 2d, that the logarithm of 1 is nothing,
and consequently that the nearer any number is to 1, the
nearer will its logarithm be to 0 ; 3d, that the product of two
numbers or factors, of which the one is greater and the other
less than 1, is nearer to 1 than that factor is which is on the
same side of 1 with itself; so of the two numbers ■§•and the
product A is less than 1, but }-et nearer to it than f. is, which
is also less than 1. On these principles he founds the present
approximation, which he explains by the following example.
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To find the relation between the logs, of 2 and 10 : In order to
,1'1 , r • *"128 ,8 27 , 23
this, he assumes two tractions, as — and —, or —, and j-’

whose numerators are powers of 2, and their denominators

powers of 10, the one fraction being greater, and the other

less than unity or 1. Having set these two down, in the form

of decimal fractions, below each other in the first column of

the following table, and in the second column a and B for

their logarithms, expressing by an equation how they are

1,280000000000 A = . «= 7/2- 2/10 Z2> 0,28 '|
0,800000000000 B = . . = 3/2- Z10

<0,33 |
1,024000000000 C = A + B= 10/2- 3/10 >0,300 1
0,990352031429 D = B -j- 9c = 93/2- 2S/10 <0,30107 1
1,004333277064 E =C + 2d = 169/2- 59/10 >0,301020 j
0,938959536107 F =D + 2e = 485/2- 146/10

<0,3010309 j
1,000162894163 G =E + 4f = 2136/2- 643/10 >0,30102996 j
0,999936281874 H =F + 6g = 13301/2- 4004/10 <0,301029997

1,000035441215 l =G + 2h = 28738/2- 8651/10 >0,3010299951

0,999971720830 K = H + i = 42039/2- 12655/10 <0,3010299959

1,000007161046 L =1 + K = 70777/2— 21306/10 >0,30102999562

0,999993203514 M = K + 3l~ 254370/2- 76573/10 <0,30102999567
1,000000364511 N —L + M = 325147/2- 97879/10 >0,3010299956635
0,999999764087
comp.ar.235313

O = M + ISn —6107016/2- 1838335/10 <0,3010299956640

0 = 3645110 + 235313N=^02-585825187/2 — 693147400972/10 >0,301029995663987

composed of the logarithms of 2 and 10, the numbers in ques¬

tion, those logarithms being denoted thus, 1-2 and ZlO. Then

multiplying the two numbers in the first column together,

there is produced a third number 1,024, against which is

written c, for its logarithm, expressing likewise bj r an equa¬

tion in what manner c is formed of the foregoing logarithms

a and e. And in the same manner the calculation is conti¬

nued throughout; only observing this compendium, that be¬

fore multiplying the two last numbers already entered in tbc

table, to consider what power of one of them must be used to

bring the product the nearest that can be to unity. Now after

having continued tbe table a little way, this is found by only

dividing the differences of the numbers from unity one by the

pther, and taking the nearest quotient for the index of the



.414 CONSTRUCTION OF TRACT 21.

power sought. Thus, the second and third numbers in the
table being 0,8 and 1,021, their differences from unity are

0,200 and 0,024 ; hence 0,200 -f- 0,021 gives 9 for the index ;
and therefore multipij ing the 9th power of 1,024 by 0,8,
produces the next number 0,990352031429, whose logarithm
is d = b + 9c.

When the calculation is continued in this manner till the

numbers become small enough, or near enough to 1, the last
logarithm is supposed equal to nothing, which gives an equa¬
tion expressing the relation of the logarithms, and thence the
required logarithm is determined. Thus, supposing g = 0,
we have 2136/2 — 643/10 = 0, and hence, because the loga¬
rithm of 10 is 1, we obtain /2 = -^-=0,30102996, too small

in the last figure only ; which so happens, because the num¬
ber corresponding to g is greater than 1. And in this manner
are all the numbers in the third or last column obtained, which
are continual approximations to the logarithm of 2.

There is another expedient:, which renders this calculation
still shorter, and it is founded on this consideration: that
when x is small, (l +.r)" is nearly = 1 -\-nx. Hence if 1-l-A’
and 1 — z be the two last numbers already found in the first
column of the table, the product of their powers (1 + j)”x
(1 — z)” will be nearly = 1; and hence the relation of m and

n may be thus found, (1 -f x) m x (1 — z) n is nearly =
(1 + w.r)x (1 — nz) — 1 -f- vix — nz — vinxz = 1 + mx — nz
nearly, which being also = 1 nearly, therefore m : n : : z :

x : : l. (l — z) : /. (1 + x); whence xl . (1 — z) + zl . (1 -f- .r) = 0.
For example, let 1,024 and 0,990352 be the last numbers iu
the table, their logs, being c and d : here we have 1,024 = 1 +x,
and 0,990352=1 — 2 ; conseq, x = 0,024, and 2 = 0,009648,
and hence the ratio — in small numbers is —. So that, for

finding the logarithms proposed, we may take 500d + 201c =

48510/2— 14603/10=0; which gives /2=0,3010307. And in
this manner are found the numbers in the last line of the
table.
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Of Mr. Long's Method.

In number 339 of the Philosophical Transactions, are given'
a brief table and method, for finding the logarithm to any num¬
ber, and the number to any logarithm, by Mr. John Long,
B. D. Fellow of C. C. C. Oxon. This table and method are
similar to those described in chap. 14, of Briggs’s Arith. Log.
differing only in this, that in this table, by Mr. Long, the
logarithms, in each class, are in arithmetical progression, the
common difference being 1; but in Briggs’s little table, the
column of natural numbers has the like common difference.
The table consists of eight classes of logarithms, and their
corresponding numbers, as follow :

I,. Nat. Numb.| Log.
Nat. Numb.

Log.
Nat. Numb.'

Log..
Nat. Numb.

,9 7,943282347 ,009 1,020939484 ,00009 1,000207254 ' ,0000009 1,000002072
,8 6,309573445 8 1,018591388 8 1,000184224 8 1,000001842
,7 5,011872336 7 1,016248694 7 1,000161194 7 1,000001611
,6 3,981071706 6 1,013911386 6 1,000138165 6 1,000001381
5 3,162277660 5 1,011579454 5 1,000115136 5 1,000001151
4 2,511886432 4 1,0092528S6 4 1,000092106 4 1,000000921
3 1,995262315 3 1,006931669 3 1,000069086 3 1,000000690
2 1,584893193 2 1,004615794 2 1,000046053

0
1,000000460

1> 1,258925412 1 1,002305238 1 1,000023026 1 1,000000230

’09 1,230263771 ,0009 1,002074475 ,000009 1,000020724 ,00000009 1,000000207
8 1,202264435 8 1,001843766 Sll,000018421 8 1,000000184
7 1,174897555 7;i,001613109 t! 1,00001G118 1,000000161
6 1,148153621 6 1,001382506 6 1,000013816 6 1,000000138
5 1,122018454 5 1,001151956 5(1,000011513

5 1,000000115
4 1,096478196 4 1,000921459 4J 1,000009210 4 1,000000092
3 '1,071519305 3 1,000691015 3 1,000006908 3 1,000000069
2 1,047128548 2 1,000400623 2 1,000004005 2 1,000000046
1 1,023292992 1 ; 1,000230285 1 1,000002302' 1 1.000000023

where, because the logarithms in each class are the continual
multiples 1 , 2 , ?>, ike, of the lowest, it is evident that the na¬
tural numbers are so many scales of geometrical proportionals,
the lowest being the common ratio, or the ascending num¬
bers are the 1, 2, 3, &c, powers of the lowest, as expressed
by the figures 1, 2, 3, &c, of their corresponding logarithms.
Also the last number in the first, second,, third, See class, is-
die 10th, 100th, 1000th, &c root of 10 ; and any number in.
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any class, is the 10th power of the corresponding number iii
the next following class.

To find the logarithm Of any number, as suppose of 2000,
by this table, Look in the first class for the number next less
than the first figure 2, and it is 1,995262315, against which
is 3 for the first figure of the logarithm sought. Again, di¬
viding 2, the number proposed, by 1,995262315, the number
found in the table, the quotient is 1,002374467 ; which being
looked for in the second class of the table, and finding neither
its equal nor a less, 0 is therefore to be taken for the second
fignre.of the logarithm ; and the same quotient 1,002374467
being looked for in the third class, the next less is there found
to be 1,002305238, against which is 1 for the third figure of
the logarithm; and dividing the quotient 1,002374467 by
the said next less number 1,002305238, the new quotient is
1,000069070 ; which being sought in the fourth class, gives
0, but sought in the fifth class gives 2, which are the fourth
and fifth figures of the logarithm sought: again, dividing: the
last quotient by 1,000046053, the next less number in the
table, the quotient is 1,000023015, which gives 9 in the 6th
class for the Gth figure of the logarithm sought: and again
dividing the last quotient by 1,000020724, the next less
number, the quotient is 1,000002291, the next less than which,
in the 7th class, gives 9 for the 7th figure of the logarithm :
and dividing the last quotient by 1,000002072, the quotient
is 1,000000219, which gives 9 in the 8th class for the 8th
figure of the log.: and again the last quotient 1,000000219
being divided by 1,000000207, the next less, the quotient
1,000000012 gives 5 in the same 8th class, when one figure is
cut off, for the 9th figure of the logarithm sought. All which
figures collected together give 3,301029995 for Briggs’s log.
of 2000, the index 3 being supplied ; which logarithm is true
in the last figure.

To find the number answering to any given logarithm, as
suppose to 3,3010300 : omitting the characteristic, against
the other figures 3, 0, 1, 0, 3, 0, 0, as in the first column in
the margin, are the several numbers as in the 2d column,
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found from their respective. 1st, 2d, 3d,
&c classes; the effective numbers of
which multiplied continually together,
the last prod uct is 2,000000019966, which,
because the characteristic is 3, gives
2000,000019966, or 2000 only, for the
required number, answering to the given
logarithm.

3

0

1

0
3

0
0

1,995262315
0

1,002305238-
0

1,000069080
0

0

Of Mr. Jojies's Method.

In the 61st volume of the Philosophical Transactions, is a

small paper on logarithms, which had been drawn up, and left

unpublished, by the learned and ingenious William Jones, Esq.

The method contained in this memoir, depends on an appli¬

cation of the doctrine of fluxions, to some properties drawn

from the nature of the exponents of powers. Here all num¬

bers are considered as some certain powers of a constant de¬

terminate root: so, any number x may be considered as the

a power of any root r, or that x — r z is a general expression

for all numbers, in terms of the constant root r, and a vari¬

able exponent s. Now the index z being the logarithm of

the number x, therefore, to find this logarithm, is the same

thing, as to find what power of the radical r is equal to the
number x.

From this principle, the relation between the fluxions of

any number x, and its logarithm z, is thus determined : Put

T — 1 +7i; then is x = r z = (1 -f n) z , and x -f x.= (1 +?i ) z+z —.

(1 +?i) z x (1 + n) z =xx (1 + n) z, which by expanding (l-f-jz)*,

omitting the 2d, 3d, &c powers of k, and writing q for

becomes x + xk x (q + 4 <f + + if + &c); therefore

x = axz, putting a for the series q + 4? z +i? 3 & c , or f.i=xk,

putting/ = K

Now when r = 1 +?i= 10, as in the common logarithms of

Briggs’s form; then ti = 9, q — ,9, and the series ? + 4/ + j? 3

&c, gives a— 2,302585&c, and t.heref. its recip./=,434294Scc.

But if a— 1 ==/, the form will be that of Napier’s logarithms.
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from the above form xk—fx, or « = —, are then deduced

many curious and general properties of logarithms, with the
several series heretofore given by Gregory, Mercator, Wallis,
N’ewton, and Ilallejn But of all these series, that one which
our author selects for constructing the logarithms, is this,

putting n = the logarithm of y is = 2 f x : n + an 3 -p
an 5 + -J-n 7 -p Nc, in the case in which r — p is = 1, and con¬
sequently in that case n = —-— or —-— : which series will1 J l2r — 1 2p+l’
then converge very fast.

Hence, having given any numbers, p, q, r, &c, and as
many ratios a, b , c, &c, composed of them, the difference
between the two terms of each ratio being 1; as also the
logarithms a, b, c, See, of those ratios given : to find the
logarithms p, q, r, &c, of those numbers ; supposing f = 1.

° y 3a
For instance, if p = 2, q = 3, r — 5 ; and a = — —,

6 — !- = c = -2 - = —. Now the logarithms A, B, c, of
13 3'j’ 24 3-23 & .these ratios a, b, c, being found by the above series, from the

nature of powers we have these three equations,
a = 2a - 3 p
35 = 4p — a — r > which equations reduced give
c = 2 r — a — Sp '

p == 3 a -|- 4b + 2c = log. of 2.
q =; 5a + 6b + 3c = log. of 3.

r = 7a P 9e + 5c = log. of 5.

And hence p + r == 10a -P 13b p 7c is = the logarithm of
2 x 5 or 10.

An elegant tract on logarithms, as a comment on Dr. Hal¬
ley’s method^ was also given by Mr. Jones, in his Synopsis
Palmariorum Matheseos, published in the year 1706. And,
in the Philosophical Transactions, he communicated various
improvements in goniometrical properties, and the series re¬
lating to the circle and to trigonometry.

The memoir above described was delivered to the Royal
Society by their then librarian, Mr. John Robertson, a wor¬
thy, ingenious, and industrious man, who also communicated
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to the Society several little tracts of bis own relating to loga-

rithmical subjects ; be was also the author of an excellent

treatise on the Elements of Navigation in two volumes ; and

be was successively mathematical master to Christ’s hospital

in London; head master to the royal naval academy at Ports¬

mouth ; and librarian, clerk, and housekeeper, to the R 03 M

Society; at whose house, in Crane Court, Fleet-street, he died

in 1776, aged 64 years.

And among the papers of Mr. Robertson, I have, since his

death, found one containing the following particulars relat¬

ing to Mr. Jones, which I here insert, as I know of no other

account of his life, &c, and as any true anecdotes of such ex¬

traordinary men must always be acceptable to the learned.—

This paper is not in Mr. Robertson’s hand writing, but in a

kind of running law-hand, and is signed R. M. 12 Sept. 1771.
“ William Jones, Esquire, F. R. S. was born at the foot of

Bodavon mountain [Mynydd Bodafon],in the parish ofLlan-

fihangel tre’r Bardd, in the isle of Anglesey, North Wales,

in the year 1675. Mis father John George* was a farmer, of

a good family, being descended from Hwfa ap Cynddelw, one

of the 15 tribes of North Wales. He gave his two sons the

common school education of the country, reading, writing,

and accounts, in English, and the latin grammar. Harry his

second soon took to the farming business ; but William the

eldest, having an extraordinary turn for mathematical studies,

determined to try his fortune abroad from a place where the

same was but of little service to him ; he accordingly came to

London, accompanied by a young man, Rowland Williams,

afterwards an eminent perfumer in Wych-street. The report

in the country is, that Mr. Jones soon got into a merchant’s

counting-house, and so gained the esteem of his master, that

he gave him the command of a ship for a West-India voyage;

and that upon his return he set up a mathematical school,

* “ It is the custom in several parts of Wales for the name of the father to
become the surname of his children. John George the father was commonly
called Sion Siors of Llambado, to which parish he moved, and where his children
were brought up-”

VOL. I. G G
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and published his book of -navigation* ; and that upon the
death of the merchant lie married his widow : that Lord Mac¬
clesfield’sson being his pupil, he was made secretary to the
chancellor, and one of the D. tellers of the exchequer—and
they have a story of an Italian wedding which caused great
disturbance in Lord Macclesfield’s family, but compromised
by Mr. Jones ; which gave rise to a saying, that Macclesfield
was the making of Jones, and Jones the making of Maccles¬
field.” Mr. Jones died July 3, 1749, being vice-president of
the Royal Society; and left one daughter, and a young son,
who was the late Sir William Jones, one of the judges in India,
and highly esteemed for his great abilities, extensive learning,
and eminent patriotism.

Of Mr. Andrew Reid and Others.

Andrew Reid, Esq. published in 1767 a quarto tract, under
the title of An Essay on Logarithms, in which he also shows
the computation of logarithms, from principles depending on
the binomial theorem and the nature of the exponents of
powers, the logarithms of numbers being here considered as
the exponents of the powers of 10. He hence brings out the
usual series for logarithms, and largely exemplifies Dr. Hal¬
ley’s most simple construction.

Besides the authors whose methods have been here parti¬
cularly described, many others have treated on the subject of
logarithms, and of the sines, tangents,, secants, &c; among
the principal of whom arc Leibnitz, Euler, Maclaurin, Wol-
fins, and professor Simson, in an elegant geometrical tract on
logarithms, contained in his posthumous works, printed in 4<to-
at Glasgow, in the year 1776, at the expense of the very
learned Earl Stanhope, and by his Lordship disposed of in

* This tract on navigation, inlitled, u A New Compendium of the whole Art

of Practical Navigation,” was published in 1702, and dedicated “ to the reverend
and learned Mr. John Harris, M. A. and F.R.S.” the author, I apprehend, of

the “ Universal Dictionary of Arts and Sciences,” under whose roof Mr. Jones
says he composed the said treatise on Navigation.



Tract 21. LOGARITHMS. 451

presents among gentlemen most eminent for mathematical
learninar. O

Of Mr. Dodson's Anti-logarithmic Canon.

The only remaining considerable work of this kind pub¬

lished, that I know of, is the Anti-logarithmic Canon of Mr,

James Dodson, an ingenious mathematician, which work he

published in folio in the year 1742; a very great performance,

containing all the logs, under 100000, and their correspond¬

ing natural numbers to 11 places of figures, with all their

differences and the proportional parts; the whole arranged

in the order contrary to that used in the common tables of

numbers and logarithms, the exact logarithms being here

placed first, and increasing continually by 1, from 1 to 100000,

with their corresponding nearest numbers in the columns op¬

posite to them ; and, by' means of the differences and pro¬

portional parts, the logarithm to any number, or the number

to any logarithm, each to 11 places of figures, is readily found.

This work contains also, besides the construction of the na¬

tural numbers to the given logarithms, “ precepts and ex¬

amples, showing some of the uses of logarithms, in facilitating

the most difficult operations in common arithmetic, cases of

interest, annuities, mensuration, &c ; to which is prefixed an

introduction, containing a short account of logarithms, and

of the most considerable improvements made, since their in¬

vention, in the manner of constructing them.”

The manner in which these numbers Wrere constructed,

consists chiefly in imitations of some of the methods before

described by Briggs, and is nothing more than generating a

scale of 100000 geometrical proportionals, from 1 the least

term, to 10 the greatest, each continued to 11 places of

figures; and the means of effecting this, are such as easily

flow from the nature of a series of proportionals, and are

briefly as follows First, between 1 and 10 are interposed 9

mean proportionals ; then between each of these 11 terms

there are interposed 9 other means, making in all 101 terms;

then between each of these a 3d set of 9 means, making in
G G 2
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all 1001 terms; again between each of these, a 4th set of 9
means, making in all 10001 terms; and lastly, between each
two of these terms, a 5th set of 9 means, making in all 100001
terms, including both the 1 and the 10. The first four of
these 5 sets of means, are found eacli by one extraction ol the
10th root of the greater of the two given terms, which root
is the least mean, and then multiplying it continually by it¬
self, according to the number of terms in the section or set;
and the 5th or last section is made bv interposing each ol the
9 means by help of the method of differences' before taught.
Namely, putting 10, the greatest term,

=A, a To =b, b t ’° = c, c To = d, d’ tb '= f., and ]!To = f ; now
extracting the 10th root of A or 10, it gives 1,253925411S =

b=a T15 , for the least of the 1st set of means ; and then multi¬
plying it continually by itself, we have B, b% B 3 , B 4 , &c, to B 10

—A, for all the 10 terms: 2dly, the 10th root of 1,2589254118

gives 1,0232929923 = c r= k t '°_= a t '°°, for the least of the
2d class of means ; which being continually multiplied gives
c, c 1, c 3 , &c, to c 100 = e'° = a, for all the 2d class of 100
terms: 3dlv, the 10th root of 1,0232929923 gives 1,0023052381

= D = cT ° = b tot =a t “° v , for the least of the 3d class of
means ; which being continually multiplied, gives d, d 1, d !,
&c, to d icdo = c 100 — b'° = a, for the 3d class of 1000 terms :
4thly, the 10th root of 1,0023052381 gives 1,0002302850 =

E = d t ° = c T '~°~5' = b t °° s = a tooc o' 5 f or t j le j east 0 c t | le 4 p n
class of means, which being continually multiplied, gives e,

e’, e 3 , &e, to e 10000 = d 1000 = c 100 = b 10 = a, for the 4th class
of 10000 terms. Now these 4 classes of terms, thus produ¬
ced, require no less than 11110 multiplications of the least
means by themselves; which however arc much facilitated by
making a small table of the first 10, or even 100 products, of
the constant multiplier, and from it only taking out the pro¬
per lines, and adding them together : and-these 4 classes of
numbers always prove themselves at every 10th term, which
must always agree with the corresponding successive terms



TRACT 21. LOGARITHMS. 4.5 ,i

of the preceding class. The remaining 5th class is constructed
by means of differences, being much easier than the method
of continual multiplication, the 1st and 2d differences only
being used, as the 3d difference is too small to enter the com¬
putation of the sets of 9 means, between each two terms of
the 4th class. And the several 2d differences, for each of
these sets of 9 means, are found from the properties of a set
of proportionals, 1, r, ?' 3, &c, as disposed in the 1st column
of the annexed table, and their several orders of differences
as in the other columns of the. table ; where it is evident that

Terms. 1st dif. 2d dif. 3d dif. &c.

1 X (r-l)x (r- 1 )2 x (r- 1 ) 3 x

1 l 1 1 &c.V V r V
r z r z ? ,z 7a
>3 73 r 3 73

&c. & C. &c. & C.

each column, both that of the given terms of the progression,
and those of their orders of differences, forms a scale of pro¬
portionals, having the same common ratio r; and that each
horizontal line, or row, forms a geometrical progression,
having all the same common ratio r— 1, which is also the 1st
difference of eacli set. of means : so, (?’— 1 ) 2 is the 1st of the
2d differences, and which is constantly the same, as the
differences become too small in the required terms of our pro¬
gression to be regarded, at least near the beginning of the
table: hence, like as 1, ?•— 1, and (r—1 ) 2 are the 1st term,
with its 1st and 2d differences ; so ?•”, r n . (r — 1), and r n .
(r— l) 2 , are any other term with its 1st and 2d differences.
And by this rule the 1st and 2d differences are to he found,
for every set of 9 means, viz, multiplying the 1st term of any
class (which will be the several terms of the series e, f.% e 3,
&.c, or every 10th term of the series f, f 2, f 3, &c) by r— 1,
or f — 1, for the 1st difference, and this multiplied by f — 1
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again for the true 2d difference, at the beginning of that
class. Thus, the 10th root of 1,0002302850, or e, gives
1,000023026116 for f, or the 1st mean of the lowest class,
therefore f — l=r— 1 = ,000023026116, is its 1st differ¬
ence, and the square of it is (r— 1) ! = ,0000000005302 its 2d
diff.; then is ,0000230261 16f'°“ or ,000023026 116e”, the 1st
difference, and ,0O0QOOO0O53O2f 2°” or ,0000000005302e : ” is
the 2d difference, at t he beginning of the nth class ol decades.
And this 2d difference is used as the constant 2d difference

through all the 10 terms, except towards the end of the table,
where the differences increase fast enough to require a small
correction of the 2d difference, which Mr. Dodson effects by
taking a mean 2d difference, among all the 2d differences, in
this manner; having found the series of 1st differences
(f— 1).e\ (f—1).e” + 1, (f—1).e” +2 , &c, he takes the differ¬

ences of these, and T'-0- of them gives the mean 2d differences
to be used, namely, (e" + 1—e"), (e” +2 — e’,+ '), &c,
are the mean 2d differences. And this is not only the more
exact, but also the easier way. The common 2d difference,
and the successive 1st differences, are then continually added,
through the whole decade, to give the successive terms of the
required progression.

TRACT XXII.

SOME PROPERTIES OF THE POWERS OF NUMBERS.

1. Of any two square numbers, at any distance from each
other in the natural series of the squares l 2, 2% 3% 4% &c,
the mean proportional between the two squares, is equal to
the less square plus its root multiplied by the difference of
the roots, that is, by the distance in the series between the
two square numbers, or by 1 more than the number of squares
between them. The same mean proportional, is also equal
to the greater of the tivo squares, minus its root the same
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number of times taken. That is, mn = mm + dm — nn — dn%

where is —n — m, the distance between the two squares

Wl % n' 1. For, since n~m + d ; multiply by m, then mn—mm +

md, winch is the first part of the proposition. Again, m—n — d ;

multiply this by n, then mn — nn — nd, which is the latter

part.

2. An arithmetical mean between the two squares mm and

nn, exceeds their geometrical mean, by half the square of the

difference of their roots, or of their distance in the series. For,

by the first section, mn = mm + dm, and also mn — jin — dn;

add these two together, and the sums are 2mn = mm + nn

— d (n — ?n) — mm + nn — dd divide by 2, then nn — pmn

+ %nn — ldd .

3. Of three adjacent squares in the series, the geometrical

mean between the extremes, is less by 1 than the middle

square. For, let the three squares be mr, (?M+ 1)% (?7i + 2) J ;

then the mean between the extremes, m(m + 2) = mm -J- 2 m

is = (m + l) 2 — 1.

In like manner, the mean between the extremes, of any three

squares, whose common distance or difference of their roots

is d, is less than the middle square by the square of the
distance dd.

4. The difference between the two adjacent squares mm,

nn, or nn — mm, is (m + l) 2 — nd — 2m +1. In like man¬

ner, the difference between rd and the next following square

p 1, or p z — n z, is 2?i + 1; and so on. Hence, the difference

of these differences, or the 2d difference of the squares, is

2 (n — m) = 2, which is constant, because n — ni — l. And

thus, the 2d differences being constantly the number 2, all

the first differences will be found by the continual addition

of this number 2; and then the whole series of squares them¬

selves will be found by the continual addition of the first

differences. Thus, the

2d difs. 2, 2, 2, 2, 2, 2, 2, 2, ft, 2, &c.

1st difs. 1,3,5, 7, 9,11,13,15,17, 19, &c.

squares, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 8tc.
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5. Again, if m 3, n 3, p 3, be three adjacent cubes ; then

n m _ 3m + 3m + 1 ) and the differences of these first
p 1 — n 3 = 3 if + 3w + 1 )
differences is 3(?z z — m z) + 3{n— m) = 6(m + l), the 2d differ¬
ence. In like manner, the next, 2d difference will be 6(w-|-l).
Then the dif. of these 2d differences is 6(« — m) = 6 the 3d
difference, which therefore is constant. Now, supposing the
series of cubes to begin from 0, the first of each of the several
orders of differences will be found by making m — 0, in the
general expression for each order: thus, 6(m-f- 1) becomes6
for the first of the 2d differences; and 3m l + 3m-b 1 becomes
1 for the first of the 1st differences. And hence is found all
the others, as in this table.

3d difs. 6, 6, 6, 6, 6, 6, 6, 6, 6, &c.
2d difs. 6, 12, IS, 24, 30, 36, 42, 43, 54, &c.
1st difs. 1, 7, 19, 37, 61, 91, 127, 169, 217, &c.
cubes 0, 1, 8, 27, 64, 125, 216, 343, 512, &c.

And thus may all the powers of the series of natural num¬
bers 1, 2, 3, 4, 5, &c, be found, bv addition only, adding
continually the numbers throughout the several orders of dif¬
ferences. And here it is remarkable, that the number of the
orders of differences, will be the same as the index of the
powers to be formed; that is, in the series of squares, there
are two orders of differences; in the cubes, three; in the 4th
powers, four, 8tc: or, which is the same thing, of the squares,
the 2d differences are equal to each other; of the cubes, the
3d differences are equal; of the 4-th power, the 4th diffs. are
equal; &c. Further, the 2d diffs. in the squares are 1.2 = 2;
the 3d diffs. in the cubes 1.2.8 = 6; the 4th diffs. in the 4th
powers 1.2.3.4=24; and so on. And from these properties
were found, by continual additions only, all the series of
squares and cubes in the table at the end of this volume, and
in my large Table of the Products and Powers of Numbers,
published in 1781, by the Board of Longitude.
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TRACT XXIII.

A NEW AND EASY METHOD FOR THE SQUARE ROOTS OF

NUMBERS.—FROM MY MATHEMATICAL MISCEL. P. 323 .

Problem. —Having given any nonquadrate number n ; it is

required to find a simple vulgar fraction the value of

which shall be within any degree of nearness to */n, the
surd root of n.

Investigation. —Since ,/n is nearly, or d zn=n z nearly;

let d 1n be = if — d. Then, since n, d, and n, are all inte¬

gers by the supposition, D must also be an integer ; and the

smaller that integer is, the nearer will the value of be to

\Zn, as is evident: therefore let d = 1 the smallest integer;

then is d zn = if — 1, or if = df n -j- 1 : suppose this to be =

(dx — l) 2 — d\v 1 — 2 d.v + I, where x is evidently some near

value of Vn; from this equation we have d =-5—, and con¬

sequently nry/^’N- 1) — ; hence theref. y'N^yis =
I s + N ,

ir nearl y-

Thus then the function x +— is an approximate value of0.x 1 1

v'n, where x is to be assumed of any value whatever; but

the nearer it is taken to ^/n, the nearer will the value of the

fraction be to %/N required. And since is always nearer

to ,/n than wdiat x is, therefore assume any integer, or ra¬

tional fraction, for x, but the nearer to </n the more conve¬

nient, and write that assumed value of it in this expression,

instead of it, so shall we. have a nearer approximate rational

value of v/n; then use this last found value of v /n instead

of x, in the same expression, and there will result a still nearer

rational value of ^/n ; and thus, by always substituting tin.’!
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last found value for x, in the fraction * +N or lx + —, the

result will be a still nearer value. And thus we may proceed

to any degree of proximity required.
But a theorem somewhat easier for this continual substitu¬

tion, maybe thus raised: ^ being an} - one approximate va¬

lue of y'' n, write it instead of x, in the general function

then we have —for the general approximation.

That is, having assumed or found any one approximation

~f, the numerator of the next nearer approximation will be

equal to the sum of the square of the numerator n and n

times the square of the denominator of this one, and the de¬

nominator of the new one will be double the product of the
numerator and denominator of this.

Or, a still easier continual approximation is^———,1 1 ‘2dn i 2me

which is equal to the former, because n z is = d 1n + 1 .

Example 1.—To find near rational values of the square
root of the number 2.—Here n = 2. Take or for the

first value of x, as being nearly equal to a/ 2. Then n — 3,

and d — 2 : therefore ——— = -1-8, ~ = l -416&c, for the' ‘iin J2 12
i r \ , 17 n , 2n 9—1

next nearer value or J2. Again, take ; then - - —

— \ ■,!, = vr; = 1*414215, true for a/2 to the last2x 17x12 408 ’ v

r . , -577 c n , , • 665857
figure. And writing again — for -, we obtain —— =

1 ,4142135C2376 for the value of a/2, true to the last figure,

which should be a 3, instead of a 6.

This small number is but an unfavourable example of the

method, notwithstanding the ease and expedition with which

the root has been so quickly obtained. For, the larger the

given number n is, the quicker will the theorem approxi¬

mate. Thus, taking for

Example 2.—To find the root of the number 920. Here

.N = 920, and x — 30 nearly. New we must first use the rule

because x is taken = 30, below the true value. Hence
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then 2.r
900+920
_ ~60

91

~ — =a 304
60 0 •>

V920. Next make — = —
3 a then

2 rfl— 1
the second value of

2 x 91 2—1 16561
2rfn "2*91 *3 546

30*33150183, differing from the truth but by 6 in the tenth
place of figures, the true number being 30*33150177.

And in this way may the square roots, in the tabic at the

end of this volume, be easily found.

TRACT XXIV.

TO CONSTRUCT THE SQUARE AND CUBE ROOTS AND THE

RECIPROCALS OF THE SERIES OF THE NATURAL NUMBERS.

1. For the Square Boots.

Since the square root of ah + n is a 4- ~ — — &c:1 1 1 2a Hu* loa°

therefore the series of the square roots of ah, ah + 1, ar + 2,
<r+3, &c, and their 1st, 2d, 3d, 4th, &c differences, will be
as below:

Nos.

a2
a'! + l

a z +2

a z + 3

ah-Y 4

Square Iloots.
a

1st Diffs.

J-_— -i— —2a 8a 3 1 16a 5

2d Diffs.

fl + _L_JL + _i_ 1 3
2 a 8a3 if5a$ 4o3 Sa 5

,2 4,8
a + -— — + —

1 3 _j_ 7
1 5 19

1 6

,3 9 , 27a + -- + —
4 16 . 64

a +--r+ —
1 7 37

1 9

3d Diffs.

_3_

8 “ 5 8cc.3

Where, the columns of fractions having in each of them the

same denominator, after the first line, in each class, a dot is

written in the place of the denominators, to save the too fre¬

quent repetition of the same quantities. Now it is evident

that, in every class, both of roots and of every set of differ¬

ences, the first terms are all alike; and therefore, by the

subtractions, it happens that every class of differences con-
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tains one term fewer than the one immediately preceding it.
These differences are to be employed in constructing tables
of square roots ; and the extent to which the orders of differ¬
ences are to be continued, must be regulated by the number
of decimal figures to which the roots in the table are to be
carried. In the above specimen the differences are continueds
as far as the 3d order, where the common first term is—,which

7 ba b

maj'- be sufficiently small for constructing all the preceding
orders of differences, and then the series of roots themselves,
as far as to 7 places of decimals in each, when we commence
with the number ] 024, for the first square a 1, the root of which
is 32. After this, the squares 1025, 1026, 1027, &c, conti¬
nually increasing, their roots 32 + , Sec, proceed increasing
also; but the series of numbers, in every order of differences,
are all in a decreasing progression ; so that the following
orders are all found by taking each latter difference lrom the
one immediately above it. Then, to construct the table of
roots, having found the first term of each order of differences,
as far as necessary, suppose to the 3d order; subtract that
continually from the first of the 2d differences, which will
complete the series of this order of differences. Then these
beino- taken each from the first difference, the successive re-
mainders will form the whole series of first differences.—

Lastly, these first differences added continually with the first,
square root, will form the whole series of roots, from the
first rational root, suppose 32, the root of the square num¬
ber 1024, to be continued to the next rational root 33, or
root of the next square number 10S9.' Then begin again,
from this last square number, in like manner, with a new
series of roots and differences, which are to be continued
to the third square number 1156, the root of which is the
next rational root 34. Then the like process is to be re¬
peated again, and continued from the 3d to the 4th square
number. And so on, continuing from each successive, square
number, to the next following one, as far as necessary; the
hist of each series of roots and differences always verifying
the whole series from square to square.
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The computation may begin at 1024, for the series of
squares 1024, 1089, 1156, &c, their differences being 65, 67,
69, &C, and their roots 32, 33, 84, £CC, Roots. Squares. Diffs.
as in the margin; in order to find the 32 1024
intermediate or irrational roots, to any 33 1089
proposed extent in decimals. The roots 34 1156
will be obtained true to different num- 35 1225

bers of figures, according to the number 36 1296
of the orders of differences emploj-ed.
The first differences only will give the roots true to 5 places
of figures, in commencing with the square 1024; the 2d
differences will give the roots true to 9 places; the 3d dif¬
ferences to 12 places; and so on, as here below.

65
67

69
71

First, To find the Diffs.
1 __

2 a “

— 1 _
8 ns “

+ 1 _
Ida2* 4

0*015625

. . . -38147

+18a

1st dif. 0-0156211S7

1 __ 0-000007629

— 3-
8a 5

2d dif. 0-000007618

Then for the "Roots.

2d Difs. 1st Difs.
•00000762 •01562119

761 Oi 561337
760 '01560596
758 •01359836
757 •01539078
756 •01538321
756 ■01357565
754 •01556809
753 01556055
752 ■01555302
750 •01554550
750 ■01553S00

•01553050

2. For the Cube Roots.

Roots.
32-00000000
32-01562119
32-03123476
32 04684072
32-06243908
32-07802986
32-09361307
32-10918872
32-124756S1
32-14031736
32-15587038
32-17141588
32-186953S8

In the series and contrivances for constructing a table of

cube roots of numbers, the process is exactly similar to that

for the square roots, just above explained, in every respect,

differing only in the terms of the general series by which the

root of the binomial is expressed, viz, the series for’/(a’ + w),

instead of the series for n). So that, all the explana¬

tion, and forms of process, being the same here, as in the

former case, for the square roots, the repetition of these maj*

here be dispensed with, and we shall only need t.o set down
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the scries of roots and differences, with the calculation from

them.

Now the general form of the series for ^/(« 3 + ?t), or the

cube root of « 3 + «, is a + £ - ^ + ~ - ^^there¬
fore, expounding n by '1, 2, 3, &c, the series of the cube

roots of r/ 3, a? -f 1, a 3 -f 2, a 3 + 3, See, with their 1st, 2d, 3d, See

differences, will be as below:

Nos.

a 3

a 3 + 1

a 3 +‘2

a 3 + 3

a 3 -f 4

Cube Roots.

9o5“*"Sla rt
,2 4 , 40

«+ ~+ ~
.3 9 133

« + -— — + —

4 16 , 320
a + —

1st Diffs.

3a 2 9a aT 81a 8
1 3 . 35

— - T+ —

2__ 5 -j_ 95
_L_ 7 I 185

. T .

2d Diffs.

0 10 3d Diffs.

9ai~ 27a 8 10
2 20 27a 8

10 &c
2 30 ,
_-—7-

Now here all the series converge faster than the like series

for the square roots; because here the denominators, having

higher powers, are larger than those in the former; conse¬

quently fewer terms will suffice in this case, than were re¬

quisite in the former, for an equal degree of accuracy, in all
the differences and roots. The calculation for a few terms

here follows.

First, To find the Diffs.

-1 = -0033333333
3a*
ni = .... mu
ya s

.±1 .. c
81<z8 _
1st dif. -0033322228

— = *0000022222
9n s

~ — =. 31
27u 8 ;
2d dif. '0C00022185

10
3d dif. . . 37

Then for the Roots.

3d Dif.
■0837

2d Diffs. 1st Diffs.
•0822185 •0033322228

22148 33300043
92111 33277895
22074 33255784
22037 33233710
22000 33211673
21963 33189673
21926 331677iO
21889 33145784
21852 33123895
21815 33102043
21778 33080228

33058450

Cube Roots.

10-0000000009
0033322228
0066622271
0099900166
0133155950
0166389660
0199601333
0232791006
0265958716
0299104500
0332228395
0365330438
0398410666
0431469116
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3. For the Reciprocals of Numbers.

The reciprocals of the natural numbers a, a -f- 1, a + 2,
a + 3, &c, are denoted by the fractions —, ——, ——,
&c, where a is any integer number to commence with; which
reciprocals, with their several orders of differences here follow.

Recips. 1st Diffs 2d Diffs. 3d Diffs.
1
a i
i a. a+ 1 1 . 2 1.2.3

a + 1 1 a . a +1 .a + 2 a.a+1 .a+2.a + 3
1 a+ 1 .a + 2 1 . 2 1.2.3

a+2 1 a+ l.a + 2.a + 3 a+1 .a + 2.a + 3.a + 4<
1 a+2 a+3

8 + 3

1st Dif.

2a+ 2
2 a.+ 4
2a+6

sd D-

2
2

Here, if tve would employ only the column of first differ¬
ences, by actually multiptying the terms in their denomi¬
nators, these, with their two orders of differences, will be as
follow'.

Where the first differences are Denoms.
in arithmetical progression,, and ar + a
the 2d differences equal, viz, the az + 3a-J- 2
constant number 2. Hence the a z +5a-\- 6
series of denominators will be very a z -\-la-\- 12
soon constructed, by tw'o easy additions, the first of which is by
the constant number 2. So, for instance, if a be =1000, then
the first differences, and their denomina- 1st Dif. Denoms.
tors, will be thus : Where the column of 2002 1001000'
first diffs. increases always by the number 2004 1003002
2, and the column of denominators is 2006 1005006
constructed by adding the several first differences. These
denominators are so large, that a very few figures in their
quotients, will be sufficient to form, by one addition for
each, the original column of reciprocals, to a great manj'
places of figures. And these reciprocals will be verified and
corrected at every 10th number; for any reciprocal whose
denominator ends with a cipher, will have the same signifi-
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1st Difis.
Reciprocals. Nos.

000000999 ■000999001 1001

000000997 •000998004 1002

000000995 •000997009 1003

000000993 •000996016 1004

cant figures as the reciprocal of its 10th part, which, it is

supposed, has been before found.
The above first differences and denominators will be suffi¬

cient to construct the table of reciprocals, commencing with

the number 1000, as far as 9 places of decimals, the constant

2d difference bcin<r 2 in

the 9th place, for a con¬

siderable way. Thus, di¬

viding 1 by the several
denominators above set

down, gives for their quotients the annexed column of first

cliffs, and thence their annexed reciprocals, &c.

But if a table of reciprocals be desired to a greater number

of decimals, we might take in, and employ, the column of

2d differences also ; by which means we should obtain the

series of reciprocals to 12 places of decimals. And so on, for

still more figures.

From the last two or three Tracts, may be constructed, or

may be easily continued further, such tables as here next

follow, of the reciprocals, squares, cubes, and roots of the

natural series of integer numbers ; the use of which is evi-

dently to shorten the trouble of arithmetical calculations.

The structure of the table is evident: the first column con¬

tains the natural series of numbers, from 1 to-1000 ; the 2d

the squares of the same ; the 3d the cubes ; the 4th the reci¬

procals ; the 5th the square roots; and lastly the cube roots

of the same. The decimals, in the columns of reciprocals

and roots, are all set down to the nearest figure in the last

decimal place; that is, when the next figure, beyond the last

place set down in the table, came out a 5 or more, the last

figure was increased by 1 ; otherwise not; except in the re-

petends, which occurred among the reciprocals, where the

real last figure is always set down. Those reciprocals which

in the table have less than seven places of figures, are such

as terminate, and are complete within that number, having

nothing remaining; such as -5 the reciprocal of 2, '25 the

reciprocal of 4, See. The manner and cases of applying these
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numbers are generally evident: but it may be remarked, that
the column of reciprocals (which are no other than the deci¬
mal values of the quotients, resulting from the division of
unity, or 1, by each of the several numbers, from 1 to 1000),
is not only useful in showing, by inspection, the quotient
when the dividend is unity or 1, but is also applied with much
advantage in changing many divisions into multiplications,
whatever the dividend or numerators may be, which are much
easier performed, being done by only multiplying the reci¬
procal of the divisor, as found in the table, by the dividend,
for the quotient. It will also apply to good purpose in sum¬
ming the terms of many converging series, as in the 8th of
these Tracts, in which a few of the first terms, to be found
by division, are taken out of this table, and then added
together.

VOL. I. H H
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Numb. Square. Cube. Kecipr. 1 Sq. Root. C. Root.

I 1 1 1 r0000000 1 -oooooo
2 4 8 5 1-4142136 1-259921
3 9 27 3333333 1-7320508 1-442250
4 16 04 25 2-0000000 1-587401
5 25 125 2 2-2360680 1709976
6 36 216 1666666 2-4494 s 97 1-817121
7 49 343 14285/1 2-6457513 1-9129338 64 512 125 2-8284271 2-000000
9 81 729 11 11111 3-0000000 2-080084

io 100 1000 l 3-1622777 2-154435
1 1 121 1331 0Q0Q000 3'3 166248 2-223980
12 144 17 28 0833333 3-4641016 2-289428
13 169 2197 0769230 3-6055513 2-351335
14 196 2744 0714285 3-7416574 2-410142
15 225 3375 0666666 3-8729833 2-466212
16 256 40g6 0625 4-0000000 2-519842
17 289 4913 0588235 4-1231056 2-571282
18 321 5832 0555555 4-2426407 2-620741
19 301 6859 0526316 4-3588989 2-668402
20 400 8000 05 4-4/21360 2-714418
21 441 9261 0476190 4-5825757 2758923
22 484 10648 0454545 4-6904158 2-80203g
23 529 I2167 0434783 4-795 8315 2-843867
24 5/6 13824 0416666 4-8989795 2-884499
25 625 15625 04 5 "0000000 2-924018
26 676

17576 0384615 5-0990195 -2-962496
2 7 729 19683 03/0370 5-1961524 3-000000
28 784 21952 0357143 5-2915026 3-036589
2 9 841 24389 0344828 5-3851648 3-072317
30 900 27000 0333333 5-47/2256 3-107232
31 961 29791 0322581 5-5677644 3‘l4l38l
32 1024 3276'S 03125 5-0568542 3-174802
33 IOS9 35937 0303030 5-7445626 3-207534
34 1 156 39:104 G294 118 5-83095K) 3-239612
35 1225 42875 0285714 5-9160798 3-271066
30' 1296 46656 0277777 6-0000000 3-301927
37 1309 506.53 0270270 6-0327625 3-332222
38 1444 54872 0263158 6-1644140 3-361975
39 1521 5CJ319 0256410 6-2449980 3-3912I1
40 1000 64000 025 6-3245553 3‘4 19952
41 1681 66921 0243902 6-4031242 3-448217
42 1764 740SS 023S095 6-4807407 3-476027
43 164 9 7.9507 023255S 6-5574385 3503398
44 1936 85184 0227272 6-6332496 3-530348
45 2025 91125 0222222 6-/082039
40 2116 97336 021/391 6-7823300 3-583048
47 220Q 103823 0212766 6-8556546 3-608826
48 2304 U0592 0208333 6-9282032 3-634241
49 2401 117649 0201082 7-0000000 3-659306
50 2500 125000 02 7-0710678 3-684031
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Numb. Square. Cube. Recipr. Sq. Root. C. Root. J
51 2601 132651 0196078 7-1414284 3-708430
52 2704 140608 0192308 7-2111026 3732511
53 2809 148877 0188679 7-2801099 3-756286
54 2916 157464 0185185 7-3481692 3-779763
55 3025 166375 0181818 7-4161985 3-602953
56 3136 175616 0178571 7-4833148 3-825862

57 3249 185193 0175439 7-5498344 3-848501
58 3364 ig5ii2 0172414 7-6157731 3-870877
59 3481 205379 OI69492 7 6811457 3-892996
bo 3600 216000 01666(56

7-7459667 3-914867
0 1 3721 226981 0103934 7-8102497 3-936497
02 3844 238328 O16129O 7-S740079 3-957892
(Jj 3909 250047 0158730 7-9372539 3-979057-
64 4096 262144 015025 8-0000000 4-000000
65 4225 274625 0153846 8-0622577 4-020/26
06 4356 287490 0151515 8-1240384 4-041240

07 4489 300763 0149254 8-1853528 4-061548
68 4624 314432 0147059 8-2462113 4-081656

«9 4/61 328509 0144928 8-3066239 4-101566

7 o 4900 343000 0142857 8-3666003 4-121285

7i 5041 3579H 0140845 8-4261498 4-140818
72 5184 373248 0138888 8-4852814 4-16OI68

73 5329 389017 0136986 8-5440037 4-179339
74 5476 405224 0135135 8-60232.53 4-198336
75 5625 421875 0133333 8-6602540 4-217163
76 5776 438976 0131579 871/7979 4-235824

77 5929 456533 0129S70 8-7749644 4-254321

78 6084 474552 0128205 8-8317609 4-272d59
79 6241 493039 0126582 8-8881944 4-290841
80 6400 512000 0125 8-9442719 4-S0S8/0
81 6561 531441 0123457 9-0000000 4-326749
82 6724 551308 0121950 9-0553851 4-344481
S3 6889 571787 0120482 9-1104336 4362071
84 7056 592704 0119048 9-1651514 4-379519
85 7225 614125 0117647 9-2195415 4396830
86 7396 636056 0116279 9-27861 S5 4-414005

87 756g 658503 0114943 9-3273791 4-431047
88 7744 681472 0113636 9-3808315 4-447960
89 7921 704969 0112360 9-4339&1 1 4-464745

90 8100 72(;000 0111111 9-4868330 4-481405
91 8281 753571 0109890 9-5393920 4-497942
92 8464 778688 010S6'S6 9-5916630 4-514357
93 8649 804357 0107527 9-6436508 4-530655

94 8836 830584 0106383 9-6953597 4-546836

95 9025 857375 0105263 9-7467943 4-562CJ03

96 9216 884736 0104166 9797959 0 4-578857
97 9 4<: 9 912673 0103043 9'84S8578 4-594701
98 9604 941192 0102041 9-8994949 4-610436

99 9601 9/0299 0101010 9-949S744 4-626065
100 | 10000 1000000 1 01

10-0000000 4-641589
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Numb. Square. Cnbe. Recipr. Sq. Root. C. Root.

101 10201 1030301 001)0009 10-0498756 4-6570H)
102 10404 I061208 OO98O39 10-0995049 4-6/2330
103 10609 1092727 OO97OS7 lO’DlSSgib 4-687548
104 10816 1124804 0096154 10-19S0390 4-702669
105 11025 II.5762 5 0095238 10'246'g508 4-717694
106 11236 1 U)10l6 0094340 10-2.950301 4-732624
107 11449 1225043 009345S 10-3440804 4-747459
10S 11664 125.9712 OO92592 10-392304S 4-762203
10.9 11881 1295029 0091743 10-4403065 4-776856
no 12100 1331000 OO9O9O9 10.4SS0885 4-791420
in 12321 1367631 oogoogo 10-5350538 4-8058g6
112 12544 1404928 0089286 10-5830052 4-820284
1 13 1276.9 1442897 0088496 10-6301458 4-834588
114 12996 1481544 OO87719 I0-6770783 4-848808
115 13225 1520875 OO86957 10-7238053 4-S62944
116 13456 I56O896 0086207 10-7703296 4-876999
117 13680 1601613 00S547O 10-8166538 4-890973
118 13924 1643032 00S4746 10-8627805 4-904868
119 14161 1685159 0084034 10-9087121 4-gi 8035
120 14400 1 728000 0083333 iO’9544512 4-932424
121 14641 1771561 0082645 11-0000000 4 -g46088
122 14884 1815848 008lfl67 11-0453010 4-959675
123 15129 1860867 0081300 11 -0905365 4-973190
124 15376 1906624 0080645 1 1-1355287 4-986631
125 15625 1953125 008 11-1803329 5-000000
126 15870 2000376 0079365 11-2249722 5-013298
127 16129 2048383 00/8740 11-2694277 5-026526
128 16384 2097152 0078125 11-3137085 5-03g6'84
129 16641 2l466'8g 0077519 11-3578167 5-052774
130 16900 21070OO 0076923 1 1-4017543 5-065797
131 17161 224S091 0076336 11-4455231 5-078753
132 17424 2299968 0075757 11-4^91253 5-091643
133 176'SQ 2352637 0075188 11-5325626 5-10440'9
134 17956 2406104 0074627 1 1-5758369 5-117230
135 18225 2460375 00/4074 11-6189500 5-12.9928
136 I84g6 2515456 0073529 11-661903 8 5-142563

137 18769 2571353 0072993 1170409gg 5-15513 7
138 19044 262S072 0072464 11-7473444 5 -\ 07 G~Hj
139 19321 2685619 0071942 11-7598261 5180101
140 19600 27440C0 0071429 11-8321596 5-1924g4
141 ■igssi 2803221 0070922 11-8743421 5-204828
142 20164 2863288 0070423 1 1-9163753 5-217103
143 20441) 2924207 OO6993O 11 -9582607 5-229321
144 2073 b 2985084 OO69444 12-0000000 5-241482
145 21025 3048625 . OOO8966 120415946 5-253588
146 21316 3112136 006841)3 12-0830460 5-205637
14/ 21609 3176523 0068027 12-1243557 5-277632
148 21904 3241792 0067567 12-1055251 5-289572
14.9 22201 3307949 0067114 12-2065556 5-301459
150 22500 3375000 0066666 12-2474487 5-313293 .



TR. 25 . SQUARES, CUBES, RECIPROCALS, AND ROOTS. 469

Numb. Square. Cube. llecipr. Sq. Hoot. C. Hoot.

151 22801 3442951 0066225 12-2882057 5-325074
I 52 23104 3511808 0005789 12-3288280 5-336803
153 23409 3581577 0065359 I2-3693169 5-348481
154 2371 o 3652264 0064935 12'4096736 5-360108
155 24025 3/23875 0064516 12-4-198996 5-371085
156 24336 3796416 0064103 12-48C)gg60 5-383213

157 24649 3869893 0063691 12-5299041 5-394690
15S 2496-I 3944312 0063291 12-5698051 5-406120

159 25281 4OI9679 0062893 12-6095'i02 5-417501
i6o 25600 4O96OOO 00625 12-6491 106 5-428835
161 25921 4173281 0062112 12-0885775 5-440122
]6'2 26244 425152S 0061728 12-/279221 5-451362
163 265 o'g 4330747 0061350 12-76/1453 5-462556
164 26896 441O944 OOOO975 12-8062485 5-473703
l0’5 27225 4492125 0060606 12-8452326 5-484806
166 27556 4574296 0060241 12-8840987 5-495865
167 27889 4-657463 0059880 12-9228480 5’50GS/Q
l6d 28224 4741632 0059524 12-9614814 5-517848

169 28561 4826809 0059172 13-0000000 5-528775
I/O 28()00 4913000 0058824 13-0384048 5-539658
1/1 29241 5000211 0058480 13-0766968 5-550490
17'i 29584 5088448 0058140 13-1148770 5-501298
1?3 29929 5177717 005/803 13-1529464 5-572054
17-1 30276 5268024 0057471 13-1909060 5-582770
1/5 30625 535()375 0057143 13-22S7566 5-5g3445
176 30976 5451776 0056818 13-2664992 5-604079
177 31329 5545233 0056497 13-3041347 5-614673
178 31681 5639752 0056180 13-3416641 5-625226

179 32041 5735339 0055866 13-3790882 5 635741
ISO 32400 5832000 0055555 13-4164079 5-646216
181 32761 5929741 0055249 13-4536240 5-65665 2
182 33124 6028568 0054945 13-4907376 5-667051
183 33489 6128487 0054645 l3-52774g3 5-677411
184 33856 6229504 0054348 13-5646600 5-687734
185 34225 6331625 0054054 13-6014705 5-6Q801Q
186 34596 6434856 0053763 13-6381817 5-708267
187 34969 6539203 00534/6 ]3-0747g43 5-71S479
188 35344 6644672 0053191 13-/113092 5-728054
189 35721 6/51269 0052910 1374/7271 5-738794
IfJO 36100 685c;000 0052632 13-7840488 5-748897
191 36481 6967871 0052356 13-8202750 5758965
192 , 36864 7077888 0052083 13-8564005 5-768998
193 1 37249 7189057 0051813 13-8924440 5-778996
194 3/636 7301384 0051546 13-9283883 5-788960K)5 38025 7414875 0051282 13-9642400 5-798890
196 3S416 7529536 0051020 14-000C0C0 5-808786
197 38SC9 76-15373 0050/61 14-03566S8 5-818648

198 39204 7762392 0050505 14-0712473 5-828476
199 396OI 7880599 0050251 14-1067360 5-838272
200 40000 8000000 005 14-1421356 5-84S035



47 0 SQUARES, CUBES, RECIPROCALS, AND ROOTS. TR. 25.

Numb. , Square. Cube. Recipr. Sq. Root. C. Root.
201 40401 8120601 0049751 14*1774469 5*857765
202 40804 8242408 0049504 14 *2126704 5*867464
203 41209 8365427 0049261 14*2478058 5*877130
204 41616 8489664 001y020 14*2828569 5*886765
205 42025 8615125 0048780 14*317821 1 5*896368
206' 42436 8741816 0048544 14'3527001 5*905041
20 7 4284.9 8869/43 004S309 14*387-1.046 5*915481
208 43264 8998912 0048077 14*4222051 5*924991
209 4368 1 9123329 0047847 14*4568323 5'934173
210 44100 9261OOO OO476IO 14-4913767 5*943.011
211 44521 9393931 co17393 14*5258390 5*953341
212 44944 952S128 0047170 i4*5602198 5*96273 1
213 45369 9063597 0046348 14-5945195 5*9/2091
214 45796 9800344 0016/29 14*6287383 5-Q8I426
215 46225 9938375 0046512 14*6628783 5*990727
216 466'. ;)6 10077696 OO46290 14-6969385 6*000000
217 470S9 10218313 0046083 14*7309199 6*009244
218 47524 10360232 0045872 14*764823 1 6*01 8463
219 47961 10503459 0045662 14*7986486 6*027650
220 48400 10648000 0045454 14*8323070 6*036811
221 48841 10793861 00452 49 14*8660687 6*04 5943
222 49284 1094104s 0045045 14*8996644 6*05504 8
223 49729 11089567 0044843 14*9331845 6*064126
224 50176 11239424 0044643 i4-q666295 6*073177
225 50625 11390625 0044444 1.5*0000000 6*082201
226 51076 11543176 0044248 15*0332964 6*091199
22 7 51529 11697083 0044053 15-0665192 6*100170
228 51984 11852352 0043860 15*0996689 6* 109115
229 52441 I2OO8989 0043668 15*1327460 6*118032
230 52900 12167000 0043478 15*l657509 6* 126925
231 53361 12326391 0043290 15*1986842 6*135792
232 53824 12487168 0043103 15*2315462 6*114634
233 54289 12649337 0042918 15*2643375 6*153449
284 54756 12812904 0042735 15*2970585 6* 162239
235 55225 129778/5 0042553 15*3297097 6* 171005
236 55696 13144256 0042373 15-3622915 6*1797**7
2 37 56l6'9 13312053 0042194 15*3948043 6*188463
238 0664*4 13481272 0042017 15*4272486 6-1971 5 **
239 57121 13601919 0041S41 15*4596248 6-205821
240 57600 13824000 0041666 15-4919334 6*214464
241 58081 13997521 0041494 15*5241747 6*223083
242 58564 14172488 0041322 15*5563492 6*231078
243 59049 14348907 0041152 15*5834573 6*24025 l
244 5.9536 14526784 0040934 15*620409 1 6*248800
245 60025 14706125 0040816 15*6524758 6*257324
246 60516 14886936 004065 15*6843871 6*265826
247 61009 15069223 0040486 15*7162336 6*274301
248 61504 J5252932 0040323 15*7480157 6*282760
249 62001 1543S249 0040161 15*7797338 6-291I94
250 62500 15625000 004 15*8113883 6*299604



TR. 25. SaUARES, CUBES, RECIPROCALS, AND ROOTS. 471

Numb. Square. Cube. Recipr. Sq. Root. C. Root.
251 63001 15813251 0039841 15'842g795 6-307992
252 63504 1600360S (1030683 15-6745079 6-310359
253 64009 16194277 0059526 15-9059737 6-324704
254 64516 163870)4 0039370 15-9373775 6-333025
255 65025 16581375 0039216 15-9687194 6-341325
25 6 65536 16777216 0019063 16-0000000 6-349602
2 57 66049 16974593 0038911 16 0312195 6*357859
258 66564 17173512 0038760 16-0623781 6-366095
25i) 67031 17373979 0038610 16-0934769 6-374310
260 67600 I7576OOO 0038462 16-1245155 6-382504
261 6812L 17779-5S 1 003S314 16 1554944 6-390676
20’2 68644 17984728 003SI 68 16-1864141 0\8gS827
263 69169 1S191447 0038023 16-2172747 6-406958
2(34 69696 18399744 0037378 16-2480763 6-415068
265 70225 l8609625 0037736 16-2763206 6'423157
266 70756 18821096 0037594 16-3095064 6-431226
2 67 71289 19031163 0037453 16-3401346 6'439275
268 71824 19248832 0037313 16-3707055 6*447305
26 c) 72361 19-165109 0037175 16-4012195 6455314
270 72900 19683000 0037037 16-4316767 6*463304
271 73441 ' 19902511 0036900 16-4620776 6*471274
272 78984 20123648 0036765 16'4g24225 6*479224
273 74529 20346417 0036630 16-5227116 6*487153
274 75076 20570824 0036496 16-5529454 6*495064
275 75625 20796875 0036163 16 5831240 6*502956
276 76176 2IO2I576 0036232 16-6132477 6*510829
2 77 70729

21253933 0036101 16-6433170 6*518684
27s 77284 21484952 0035971 16-6733320 6*526519
279 77841 21717639 0035842 16-7032931 6*534335
280 78400 21952000 0035714 16-7332005 6*542132
281 78961 22188041 0035587 16-7630546 6-549911
282 79524 22425768 0035461 167928556 6-55/672
283 8OO89 22665187 0035336 16-8226038 6*565415
284 80656 22906304 0035211 16-8522995 6'573]39
285 81225 23149125 0035088 16-8819430 6 -580844
286 81796 23393656 0034965 16-9115345 6*588531
287 82369 23639903 0034843 16-9410743 6*596202
28S 82944 23S87872 0034722 16-9705627 6*603854
289 83521 24437569 0034602 17-0000000 6’dl 1488
2Cj0 8 1100 24389000 0034483 17-0293364 6*619106
201 S46-S1 24642171 0034364 17-05S7221 6*626705
292 85264 24807088 0034246 17-0880075 6 634287
293 85819 25153757 0034130 17" 1172426 6*641851
2p4 86436 25412184 0034014 17-1464232 6*640399
2Q5 87025 25672375 0033898 17-1755640 6*6569.10
2C)6 87616 25934336 0033783 17-2046505 6*664443
297 88209 20198073 0033670 17-2336879 6*671940
293 88804 26463592 0033557 17-2626765 6-679419
299 89IOI 26730899 0033445 17-2916165 6’686882
300 QOOOO 27000000 0033333 17-320508 l 6-694328



*T2 SttUARES, CUBES, RECIPROCALS,AND ROOTS. TR. 25 .

1Numb. l Square. Cube. Recipr. Sq. Root. C. Root.
1 aoi

9<)6o l 27270901 0033223 17'34935l6 6701758
! 302

91204 27543608 0033113 17-3781472 6-709172
303 91809 278 is 127 0033003 17-1068952 6-716569
304 92416 28094464 0032895 17-4355958 6-723950
305 93025 28372625 0032/8/ 17-4642492 6731316
306 93036 2S652616 0032680 1/-4928557 6-738665
307 94249 28934443 0032573 17'5214I55 6-745997
30S y4S0'4 2921S112 003240S 17-5499288 6753313
309 95481 29503629 0032362 17-5783958 6-760614
310 96100 29791000 003225S 17-6o6S10'9

6-767899
311 96721 30080231 0032154 17-6351921 6-/7516S
312 97344 30371328 0032051 17-6635217 6-782422
313 97969 30664297 0031949 17-6918060 67S9661
314 9S596 30959144 0031847 177200I51 6-796884
315 99225 3 1255875 0031716 17-7482393 6-80409 1
316 09856 3155 14g6 0031646 17‘7/t*88S8 6-811284

317 100489 31855013 0031546 17-804493S 6-818461
318 101124 32157432 0031447 17-8325545 6-825624

31p 10I7O1 32461759 0031348 17-8605711 6-832771
320 102100 32768000 003125 17-8885438 6-839903
321 101041 330764 61 0031I53 17-916'4729 6 ' 8 a 7021
322 101681 33386248 0031056 17-9443584 6-854124
323 104329 3369S267 0030q6() 17-972200S 6-86121 1
324 104976 34012224 0030804 18-0000000 6-8682S4
325 105625 34328125 0030769 1S-027/564 6-875343
326 106276 34645976 0030675 1S-0554701 6-8S2388

32 7 IO6929 34965/83 00305S1 18-0831413 6-889419
32S 107584 35287552 0030488 18-1107703 6-S9'6435
329 108241 35611289 0030395 18-13835/1 64)03436
330 1 O89 OO 35937OOO 0030303 18-1659021 6-910423
331 109561 3626469] 0030211 18-1934054 6-917396
332 110224 36594368 0030120 18-2208672 6-924355
333 11088a 36926037 0030030 1S-2482876 6'931300
334 111556 372597OI 0029940 18-2756669 6-938232
335 112225 375953/5 0029851 18-3030052 6-945149
336 112896 37933050 0029762 18-3303028 6-95 2053

337 113569 38272753 0029674 18-35/5598 6’95 S943
338 114244 3S614472 0029586 18-3847/63 6-965819
339 114Q21 38958219 0029499 18-4119526 6-972682
340 115600 30304000 0029412 18-4390889 6-g79532
341 1162S1 3965I821 0029326 18-4661853 6'9 S6'3 69
342 116964 40001688 0029240 18-4932420 6-993191
343 11/649 40353607 0029155 18-5202592 7-000000
344 11S336 40707584 0029070 lS'54/2370 7-006796
345 119025 41063625 0028986 18-5741/56 7-013579
346 119716 41421736 0028902 18-6010752 7-020349

34 7 120409 41781923 0028818 18-6279360 7-027106
348 121104 42144192 0028736 18-6547581 7-033850

349 121801 42508549 002S653 18-6815417 7-040581
350 122500 428/5000 0028751 18-7082869 7-047208



TR. 25. SQUARES, CUBES, RECIPROCALS, AND ROOTS. 473

Numb. Square. Cube. ] Recipr. Sq. Root. C. Root.

351 123201 43243551 0028490 187349940 7-054003
352 123904 43614208 0028409 187616630 7-060696
353 124609 43986977 0028329 1 878829-12 7-067376
354 125316 4436)864 0028248 18-81488/7 7-074043
355 120025 44733875 0028169 18-8414437 7-080698
356 126730 45118016 0028090 18-3679623 7-08/341
357 127449 45499293 002801l 18-S944136 7-093970
358 12S164 45832712 0027933 18-9203879 7-100588

359 12888 L 46208279 0027855 18-9472i;53 7-107I93
30'0 1296OO 46656000 0027777 1-8-9736600 /•l 13/86
36 1 130321 47045831 0027/01 19-0000000 7-120367
362 131044 4/437928 0027624 I9-O202976 7-i2dg35
363 131769 47832.47 0027548 19-0525589 7-133492
364 132496 4S223544 0027473 19-078/840 7-140037
36.5 133225 48627125 0027397 19-1049732 7-146569
366 133956 49O27896 002/322 ig-131 1265 7-153090
obj 134689 49430863 0027248 19-157244 1 /• 159599
36S 135424 49830032 OO27174 19-1S33261 7-166095
3 69 136lO'l 50243409 OOJ/lOO 19-2093727 V 1/2580
370 130'900 50053000 0027027 IQ-2353841 7-179054
371 137641 51064811 OO2O954 19-2613603 7-185516
372 138384 5147S848 0020882 19-2873015 7-191966
3/3 139129 5 1805117 0026810 19-3132079 7-19«105
374 139876 52313624 0026/38 19-3390796 7-204832
3/5 140625 52734375 0020606 19-3649167 7-211247
370 141376' 53157376 0026596 19-3907194 7-21/652
377 142129 535^2633 0026525 19-4164678 7-224045
37s 1+^884 54010152 0020455 19-4422221 7-230427
379 143641 54439930 0026385 19-4679223 7-236/97
380 14-1400 54872000 0626310 19-4935887 7-243156
381 145161 55306341 0026247 19-5192213 7-249504
3S2 145.24 55742968 00261/8 195446203 /•255841
383 146689 561 8I887 0026110 19-5/03858 7-262167
384 147456 56623104 6020042 U/5959179 7-268482
385 148225 57066625 OO20974 1 19-62I4169 7-2747SD
386 148996 57512450 0025;,07 19-646SS27 7-281079
38/ 1 M:7"9 579C0003 0025840 19-6723156 7 -28/362
388 150344 58411072 00257/3 19-6977156 7-293633
38() 151321 | 58b6386’9 0625/0/ ig-7230829 7-299893
3U0 152100 59319000 0025041 19 7484177 7-306143
391 152881 59/70471 00255/5 1.07737199 7 -3123 83

392 153604 60230288 0025510 197939S99 7 -3 18611

393 154-149 60698457 0025445 19-S2422/6 /•324S29
3; 4 15 5 23 (j 61162934 0025381 ly 8-194332 /•33I037

395 156025 61 0025310 19-6/4 6069 7-337234
3Q6 156816 U20 k 9.36 0025252 19^997487 /•343420

397 157009 620; o/7-i . 025189 19-9248586 7-349596
39S 158104 63044792 002512, 19-941:9373 7-355762
399 159201 63521199 (IU25003 19-9749344 7-36.1917
4( 0 1Ot 4)00 6401.0000 0025 20-00: 0000 7-368063
VOL. 1. I I



474 SQUARES, CUBES, RECIPROCALS,AND ROOTS. TR. 25i

Numb. Square. Cube. Recipr. Sq Root. C. Root.
401 100S01 0448120’ O024i)38 2O'024()844

7-374198402 l0l0O4 64;)64 808 0024870 20'04 993 7 7 7-380322
403 162409 6545082/ 0024814 20'074S599 7-386437
404 103216 65939204 0034/52 20-099/512 7-392542
405 164025 66430125 0024 091 20-12461 18 7-398636
400’ l0'4S30 66023416 0024031 20-M94417 7-404720
407 10564U 617419143 0024570 20-17424-0 7-410794
40S 166404 67911312 0024510 ■20- IQ 0009 7-416859
40(). 107281 684 17926) 0024450 20-223/484 7-422914
410 1 OS100 63Q2lbob (:0243c;0 20-2484567 7-428058

i 41 l 168921 69426531 0024331 20"2731349 7-434993
4 12 160744 69934528 00242/2 20-2977831 7-444018
413 170569 7C444p97 0024213 20’322r0!4 7-447033
414 171396' 70951944 0024)55 20-3469899 7-453039
415 172225 71473375 0024096 20-3715488 7-459036
410 173056 71991296 0024038 20-3960781 7‘405022
41/ 173889 7251 J 7"13 0023981 20-4205779 7-470999
418 174724 73OJ403'i 0023923 20-44504S3 7 -476906
4ig 175561 73500059 0023866 20-4694895 7-482924
420 176400 7408S000 0023810 20-4939015 7 -488s/2
421 177241 74618401 00.3753 20-51 82845 7‘494810
422 178084 75151448 0023697 20'54203S6 7-S00740
423 178929 75686067 0023641 20-5669638 7-500660
424 179776 70225024 0023585 20-5912603 7-512571
425 180625 76765625 0023529 20-6155281 7'5 18473
420 181476 77308776 0023474 20-6397674 7‘524305
427 18232Q 77S54483 0023419 20-6639783 7-530248
428 183184 78402752 0023364 20-6S81O09 7-536121
42y 184041 7S953589 0023310 20-7123152 7-54198 6
430 1849OO 79507000 0023256 20-7364414 7 •547341
431 ]S576'1 SCO6299] 0023202 20-7605395 7‘5o308S
432 186624 80021508 0023148 20-7846097 7-559525
433 187489 81182737 0023095 20-8086520 7-565353
434 188356 81746504 0023041 20-8326667 7-571173
435 1S9225 82312875 0022989 20-8566536 7’576y84
430 190096 82881856 OO22936 20-8806130 7-582786
437 190969 83453453 0022383 20-9045450 7 -588579
438 ly1844 84027672 0022831 20’92844g5 7-594363
439 192721 84604519 0022779 20-9523268 7'6O0l38
440 193600 85)84000 0022727 20-976177O 7'60jyO5
411 104481 85766121 00226/6 21 -0000000 7-611602
442 195364 86350888 0022624 21-0237960 7-617411
443 196249 SO'938307 0022573 21-0475652 7-623151
444 197130 87528384 0022522 21-0713075 7-628883
445 198025 88121125 00224/2 21 -0y50231 7-634606
440 198916 88710536 0022422 21-1187121 7’640321
44 7 199309 89314623 0022371 .21-1423745. 7-646027
44 8 20070-4 89915392 0022321 21-1660105 7-6517.5
449 201601 90518S49 0022272 21-1896201 7-657414.
4 JO 202500 91125000 0022222 21-2132034 7-6->3094 1



"TR. 25. SQUARES, CUBES, RECIPROCALS, AND ROOTS. 475

Numb. Square. Cube. Recipr. | Sq. Root, j C. Root.

451 203401 91738851 0022173 21 •2367606 1 7-668766
452 204304 92345403 0022124 21 "26029 l6 : 7*0/ -4—«oO
453 205209 9'A^9677 0022075 21 "263/967 , 7-680085
454 zO',1 10 g -i . i/titioi 0022026 21-3072758 1 7-685732
455 2(.7025 94.90.75 042U>78 21-3307290 7-6913/1
45(5 21.7936 948188 ! 6 0021930 21-354 1565 ; 7-697002
457 208(.49 o5 .431(03 0021882 21-37/5583 ' 7-702634
458 209704 96 '71012 0021834 21-4009346 7-708238
459 210081 9t.'702579 0421780 21-*242853 7*7 33-t4
460 21loOO 973360(A) 0021739 21-44/6166 771i)442
461 21252 1 97::72i8i 0021692 21-4709106 7725032
402 213.44 98611128 0021615 2)'4941653 7-7306] 4
463 2i4 ;o'9 99252847 0021598 21-5174348 7-736187\0- -l

215>9J 99897:44 0021552 21-54O0'592 , 7-741753
4(15 2.6225 100444625 0021505 21-5638587 ; 7747310
46() 21/156 101194646 0021159 21-5870331 | 7-752860
467 218089 101847563 0021413 21-6101828 1 77584024bd

219024 102503232 0021308 21-63330/7 1 7-763936
469 219961 103161/09 0021322 21 -6564078 7-769462
470 220900 103823000 0021277 21-6/94834 77/4980
471 221841 1044S/ I 1 1 0021231 21-7025344 7-780490
472 222784 104154048 0021186 21 -7255610 7 785992
473 223729 105823317 0021142 21 -7485032 7791487
4; 4 2246/6 100'49'i424 0021 097 21-771541 1 7 7969/4
475 225625 107171875 0021053 21-7944947 7-802453
476 226.170 107850170 002i008 21-8174242 7-807925
477 227529 108531333 C020g64 21-8403297 7-8l338g
478 228484 109215352 0020921 21-86321 11 7’818845
479 229441 10;ig02239 00208/7 21-886.1680 7-824294
480 250400 1 1059201,0 O' (20833 2U9089023 7-829735
481 231361 11128 1641 0020/UO 21-9317122 7'835168
482 232324 I 1 i(;80l68 0020747 21-9544y84 7-840594
483 233289 I 1 '678587 0020/01 Ql-9772610 7-846013
484 234250 113379904

0020661 22-0000000 7-851424
48.1 235225 114084125 0020619 22-0227155 7 "856828
486 256196 114791256 0020576 22-0454077 7-862224
487 237169 115501303 0020534 22-0680/65 7'b6'76l3
488 258144 116214272 0020492 22-0.U07220 7-872994
4S9 239121 116930169 0020450 22-1133444 7-8/8368
490 240100 11/649000 0020108 22-1359436 7'8S3/34
491 24J081 1183/0771 0020367 22-1585193 7-889094
492 242064 119095488 0020325 22-IS 10730 7-894446
493 243019 110823157 0020284 22-2036033 7-899791
494 244036 120553784 0020243 22-2261108 7'905129
4C)5 245025 121287375 0020202 2-2-2485955 /•giOlbO
496 240016 122023936 0020162 22-2710575 7-915784
497 247009 122/63473 0020121 22-2934968 7-921100
498 248004 123505992 0020080 22-3159136 7-926108
499 249001 124251499 0020010 22-3383079 7 931/10
500 250000 125000001) 002 22-3600798 7-937005



1-76 SQUARES,CUBES, RECIPROCALS,AND ROOTS. TR. 25 <

j Numb. Square. Cube. Recipr. Sq. Root. C. Root.

501 251001 125751501 001‘i960 22-8830293 7-942293
502 252004 126504008 0019920 22**j053505 7 -94/5/3
503 253009 127263527 0019881 22-4.76015 /■9i2847
504 254016 128024064 0019841 -22-4ly9443 7958114
505 255025 128787625 00i9801 22-4/22051 7'963374
506 256036 120554216 0019763 22-49 14138 7968627
507 257019 130323843 0019724 22-5l6o605 7-073873
508 258064 13IO96512 0019685 22-5388553 797911^
500 259OS1 131S72229 OO19646 22-5610783 7-084344
510 260100 132651000 OO196OS 22V 83 1790 7-9b9569
51 L 26l 121 133432831 00195(19 22-605309 1 7994788
512 262144 134217/28 0019531 22-6274170 8-000000
513 263169 1350056lt7 0019495 22-6495033 8’00’>205
514 264Uj6 135796/44 0019455 22-6715681 8-010403
515 265225 ]30’590S/5 60194-17 22-6{}36l 14 8"0 5595
516 266256 1373SS094 0019380 22-7156334 8-02()7.'9

517 267289 138188413 00x9342 22-7376:i40 8'025957
518 268324 138691832 0019305 22-7596i34 8-011 129
5 19 269361 139798359 001926s 22'78l57l5 8-036293
520 270400 140608000 0019231 22-8035085 8-041451
521 271441 141420761 OO19191 22-82542-14 8 0l66'03
522 272484 142236648 0019157 22-8473193 8-051743
523 27352Q 143055667 0019120 22-8691933 8-056886
524 274576 143877821 0019084 22 8910463 8-062018
525 275625 144703125 0019048 22-9126785 8-067 143
526 276676 145531576 0019011 22-9346899 8-072262
527 277729 146363183 0018975 22-0564806 8-077374
528 278784 147197952 00l8t)39 22-9782506 8-062480

52 9 ^79841 1480358S9 0018904 23-0000000 8-01-7579
530 2809C0 1488/7000 001SS6’S 23-0217289 8-092672
531 281961 14Q721291 0018832 23-0434372 8-097758
532 283024 15056S70S 0018797 23 "065125 2 S'102838
533 2840S9 151419437 0018762 23-0867928 S'107912
534 285156 152273304 001S727 23-1064400 8-112980
535 286225 153130375 0018692 23-1300670 8-1 18041
536 287296 153990656' 001S657 23-1516738 8-123096
537 288369 154854153 0018622 23-1732605 8-128144
538 289444 155720872 0018587 23-1948270 8-133186

53g 290521 156590819 0018553 23-2163735 8-138223
540 291600 157464000 001851S 23-2379C01 8-143253
541 292681 158340421 001S4S4 23-25.,4067 8-148276
542 293764 159220088 0018450 23-2808035 s-153293
543 294840 i 6 oio.j 007 0018416' 23-302360-1 8-158304
544 295936 J6O989184 0018382 23-3238076 8-163309
545 297025 161878625 0018349 23-3452351 8-168308
546 298116 1(52/71336 0018315 23-3666429 8-173302
547 299209 163607323 0018282 23-36803 1 1 8-178289
548 300304 164566592 0018248 23-4093998 8-183269
549 301401 165469149 0018215 23-4307490 8-168244
550 302500 16637500b 0018181 23-4520788 8-193212



TR. 25. SQUARES) CUBES, RECIPROCALS, AND ROOTS. 47

Numb. Square. Cube. Recipr. Sq. Root. | C. Root. 1

551 303001 167284151 OO181-19 23M733tH,2 8-198175
552 304701 168196608 0018110 23 -4 94 6802 8-203 131
553 305809 169112377 0018083 23-5159520 8'208082
554 306'9i6 170031461 0018051 23-5372046 S-213027
555 30S025 170953875 OOlbOlS 23-5584380 8 -2.7965
550 309136 171879616 0017986 23 5796.522 8-222898
557 310249 1728O8O93 0017953 23-6008474 8-227825
558 311364 173711112 0017921 23-6220236 8-232746
559 312481 174676879 0017889 23-6431808 8-237661
560 3136'00 175616OOO 0017857 23-6043191 8-242570
501 314721 17655S4S1 0017825 23-6854386 8 247474
502 315844 177501328 0017794 23-7065392 8-252371
503 316969 1/8453547 OOI/762 23-7276210 8-257263
564 3180g6 179100144 0017730 23-7486842 8-202149
565 319225 180362125 OOI7699 23-76972S6 S-267029
560 320356 1S1321496 0017608 '23 -7 y 07545 8-271903
567 321489 182284263 0017637 23-8117618 8-2 76772
508 322624 183250432 0017606 23-8327500 8-281635
56 y 323761 184220009 0017573 23-8537209 8-286493
5?0 324900 1S5lg3000 0017544 23-87-16728 8-291344
571 320041 186l6g41I 0017513 23-89.56063 8 296I9O
572 327184 187149248 0017483 23-9105215 S-301030

573 32S329 188132517 0017 152 23-9374184 iS*305fed5

5/4 329470 189119224 001/422 23-9''’829/1 8-3 !O0g4
575 330625 U)0109375 0017391 23-9791576 8-3 15517
570 331776 101102970 0017301 24-00 )0.)00 8320335

577 332929 192100033 0017331 24-0208243 8-32.5147
578 334084 193100552 0017301 24-04 16306 8-329954
5/9 335211 194104539 0017271 24-0624188 8-3)4755
5 oO 336400 IgSll2000 0017241 24-0831892 8-339551
581 337561 I96I22941 0017212 24-1039416 8 344341
582 333724 197137368 0017182 24-1246762 8-34C) 125
583 339889 I98155287 0017153 24-I453929 8-353904
584 34IO56 •99176704 0017123 24-1660919 8'35 .678
585 342225 200201625 0017094 24-1867/52 8 <63446
580 343396 201230056 0017065 24-2074369 8-308209
587 344569 202262003 0017036 24-2280829 S-372966
588 345744 2032Q7472 0017007 24 r24 Sj 113 s-3; 7718
589 346921 204330469 OOI69/8 24-2693222 8-382465

59O 348100 205379000 OO16949 24-2899156 S-387206
59I 349281 200425071 OOI6920 24-3104916 8-391942
592 350164 207474688 OOI6S9I 24-3310501 8-396673
593 351649 208527857 0016863 24-3515913 8-401398
594 352836 209584584 0016835 24-3721 1.52 8-4001 18

595 354025 210614875 0016807 24-3926218 8-410832

596 355216 21170S736 OOI6770 24-4131 112 8-415541

597 356109 2127761/3 0016750 24-4335834 8-420245

593 357001 213847192 0016722 24-4540385 S-424-..44

599 358801 214921799 0016694 24'4744/65 8-4 29638
6'00 360000 210000000 0016666 24-4948974 8-434327



47S SdUARES, CUBES, RECIPROCALS,AND ROOTS. TR. 25,

Numb. Square. Cube. Recipe j Sq. Root. C. Root.
001 361201 217081801 0010039 ! 24-5153013 8-439009602 362404 21816/208 0016611 ! 24-5356883 8-443687603

363609 21925022/ 0016584 ! 24-5560583 8-448360604 364816 2203*8864 0016556 24-5764I 15 8-453027605 366025 221445125
0016529 | 24-5967478 8-457689600

36/230 222545016 0016.501 1 24-6170673 8-402347
607 368449 223648543

00164/4 j 24-6373700 8-466999
608 369664 224755/12 0010447 24-6570.560 S-47ie47
6og 3/0831 225866529 0016420 j 24-67792.54 8-4/6289
O'iO 372100 22698J000 0016393 1 24-690178) 8-480920
Oil

3/3321 228099131 0016367 i 24-7 J 84142 8-485557
612 3/4544 2292 10628 0016340 1 24-7386338 8’igO; 84
613 37576'j 230346197 0016313 24-7588368 ,8-494806
614 376994' 23147^544 001628/ 1 24-7790234 8-4,09423
615 378225 232608375 0010260 j 2 4 -; 991935 8 5o4034
6l6 379456 233744896 0010234 24-81934/3 8-508641
63 7 880689 234885113 0016207 : 24-83i A 847 8-5 13 243
618 38ly24 23 0'029u3 2 0016181 2 1-8590058 8-517840
619 383161 237 ’ 7&o5y 0010)55 : 24 -8797106 8-522432
62b 384400 23832SOOO 0010129 24 ‘8997992 8-5270; 8
621 385641 239483061 0016103 ; 24-9198716 8-53 0.05'
622 386884 24004J848 0016077 ; 24-9399278 ;,-.:3>;i77623

38»i2g 241804367 00100.51 1 24 !<>9y'V% ;--‘40/49
6 24

33„3/6 242.970024 0016020 24 97 . j 9 8 54.1317
625 390424 24C40425 0016 25’OOOv.OOO 8-54Q8/9
626 391876 2433 j 4*3/f) 0015974 25-0190920 8'55443 7
O27 3U3129 246491883 00 ! 5949 | 25-039. ,681 8 55ScjyO
628 394384 247673152 0015y24 23 0599282 8*5'>353/
029 39564 i 248858189 0015898 25-0798/24 8-508080
630 396900 250047040 0015c,73 25-Oyy8008 8-57201 8
631 390101 251239591 0015848 2 3-lly7134 8-577 152
632 399424 2524351.68 0015823 2 5-1396l02 8-581680
633 4011689 253630137 OOI.5798 25-1504913 8-5 80204
634 4OI956 25*840104 0015773 25-1793566 8-590723
635 403225 25004/875 0015/48 25-1992063 8-595238
630' 401 .90 457259456 0015723 20-2)90401 8-599747
637 4O0/69 258474855 OO15699 25-2388589 8-604252
638 40/044 259694072 OOI5G74 ^5''i5SOO 1y 8-608752
639 468321 260917119 00)5649 25-2784493 8-613248
640 409600 362144000 0015025 25-2982213 8'61 773S
641 410881 263374721 0015601 25-3 179773 8 ■022224
642 412164 2646O9288 0015576 25-3377180 8-026/O6
643 413449 265S4770/ 0015552 25-357444/ 8-63.11S3
644 414736 26/089984 0015528 25-37/ 1551 S‘635655
645 410025 268336125 0015504 25-3068502 8-640122
616 417316 269586136 00154S0 25-4165501 8-644585
647 41S0O9 2/084(1023 00154.56 25-436I947 8-649043
648 419001

272097792 0015432 25-4558441 8-653497
649 421201 2/3359449 0015408 25-475478 1 8-057946
650 . 422500 274625000 0015385 25-495007O 8-662301



Til. 25. SQUARES, CUBES, RECIPROCALS, AND ROOTS. 479

Numb. Square. Cube. Recipr. Sq. Root. C. Root.

051 SO 1 275894451 0015301 25 -5 14/010 8'666831
0'52 ■ 425104 277107808 0015837 25-5.342907 8-6/1266
053 420409 278445077 0015314 25-553864/ 8-675697
054 427716 2/9726264 00152gi 25-573423/ 8-680123
055 429025 281011375 0015267 25-5.y29678 8-684545
050 430336 282300416 0015244 25-6i24C)69 8-688963
G57 431-049 283593393 0015421 25-6320112 S-693376
60S 432964 284890312 0015198 25-6515107 8-697/84
659 481281 286191179 00151/5 25-6709953 8702188
600 435600 2874g0OOO 0015151 25-6904652 8-/06587
001 436921 238804781 0015129 25-7099203 8-710982
602 438244 29OI17528 0015106 25-/203607 S-/15373
603 439569 291434247 00J5083 25-748/864 8-719759
004 440890 292754944 0015060 25-7681975 8-/24141
665 442225 2g40/9025 0015038 25-7875939 S-/2851S
000 443550 295403296 0015015 25-8069/58 8-/32o91
607 444889 296740963 0014993 25-8263431 8-73/260
068 440224 298077632 00149/0 25-8456960 8-/41624
O09 447561 299418309 0014948 25-8650343 8745984
O70 44 8CJ00 300763000 0014925 25-SS43582 8750340
671 450211 302111711 00 H903 25-90.J6677 s /54691
672 451584 303464448 0014881 25-9229628 875.9038
673 452929 304821217 0014859 25-9422435 8"/u3380
674 454276 3004 82024 001483/ 25-9015100 8 76//19
0/5 455625 3075J6375 0014814 25-980/621 8-//2053
6/6 456y76 3089'5776 0014/93 26-0000000 87/6382
677 458329 310488733 0014/71 26-0192237 8"/80/08
O78 45.9684 311005/52 00147-19 26-0384331 8785029
079 461041 313040839 0014/28 26-0.^76284 8 789346
08O 462400 31443201:0 00!4/00 26-0768096 8-703059
631 ■463761 3 1582.' 24 1 0014684 26-095976/ 879/907
682 465124 31/214508 0014663 26-1151297 8-8022/2
6b3 466489 31801198/ OC14641 26-184268/ 8-8065/2
6s4 467856 320013504 0014620 26-l533g37 8-810868
685 409225 321410125 0014599 26-1725047 8-815159
686 470596 322828854 00145/7 26-1916017 s's 194-1/
087 4-71909 324242/03 0014556 26-2106848 S'823/30
6S8 473344 325600672 0014.535 26-2297541 8'826009
689 474721 327OS2769 0014514 26-2488095 8-832285

690 476100 323509000 0014-193 26-26/85 1 1 8-836556

691 477481 32993937] 00144/2 26-281.8/89 S'S40822

692 478804 3313/3888 0014451 26-3058,129 8-845085

693 480249 33281255/ 0014430' 26-3248-432 8-849344
694 481630 334255384 00]440p 26-3433/9/ 8-85359S
695 483025 335702375 0014388 26-3028527 S-8'7819
0y6 484410 33/153530 0014308 20-381 Si 19 8-862095
697 485809 338608873 001434/ 26-400/576 8-866337
698 48/204 340068392 001432/ 26-4196896 8-8/0575
6.99 488001 341532099 0014306 26-4386081 S'8/4809
700 490000 343000000 0014286 26-45/5131 8-8/9040



480 SQUARES, CUBES, RECIPROCALS, AND ROOTS. TR. 25.

Numb. Square. Cube. Recipr. Sq. Root. C. Root.

701 491101 344172101 (KH4265 26-4764036 8-363266

702 492S04 34594S008 0014245 2r49i2826 8-88/488
702 49*209 3474289^7 0014225 26-514 1 .72 8-891706
704 4956'ld 348 ) 13664 0014205 26-532(1983 8-895920
/O J 497025 350402625 0014184 26-5518361 8-900130
70S 498436 351895816 0014161 26-5700605 8-go 1330'
707 499849 353393243 0014144 26-5894716 8-906538
70S 50120'4 354894912 0014124 20-0082694 8-912736
709 502681 350400»2g 0014104 26-62;0539 8-91693]
7U) 504(0) 35791 jOOO 0014015 26-6458252 S 921121
71 I 505j21 3 )i)425431 00110)5 26-6645833 8-925307
712 504944 36.1,1-14128 0014045 26-6833281 8 •929490
7)3 50330.) 3 62467097 0014025 26-7020598 8 933668
714 509796 36 9g4344 0014006 26-7207784 8-937843
715 511225 36.55258/5 0013986 26-7394839 8-942014
7)0 51205o 36706IO96 0013966 26-7581763 8-946180
717 51408.) 308 )01 313 0013. 47 26-7768557 8-950343
718 515524 370M6232 0013923 20-79552-20' 8-954502
719 516961 3716Q495C) 0013908 26-8141754 8"9 5 S65S
7 20 518400 373248000 0013888 26-8 :’28I57 8-962809
721 519841 374805361 00)3870 20-8514432 8-966957
722 521284 376367043 0013850 26-8700577 8-971100
723 522729 377913067 001383 1 26-8Sb6393 8-975240
724 524170' 379503421 C013812 26-0072481 S‘9793/6
725 525625 331078125 0013793 26-9258240 8-98340S
726 527076 38:657176 0013774 26-9443872 8-987637
727 528529 38424058) 00)3755 20-9629375 S-;.!.9i/()2
72S 5209S4 385823352 0013730 20-98I475I 8-99588.)
729 531441 337420489 0013717 27-0000000 9-1’00000
7 30 532900 389 OI 7 OOO 0013699 27 -0185122 9-004 • 13
731 534361 390617891 0013680 27-03, 0117 9-008222
7 32 535824 39222.3) OS 0013661 27 '035-1985 yOl 2328
733 537289 393832337 0013643 27 0739727 9-0164.:o
734 538756 395446g04 0013624 27’0. '213 14 9-020.529
735 5 10225 397065375 0013605 2/-1.03834 9-024623
730 5 11696 398633256 0013587 2 ’ 12Q3 9 ; ) 9-0/8714
737 543169 400315553 0013569 ! 27’14/7439 9-032802
738 544644 40:947/72 0013550 2 • I 60 1554 9'036bS5
739 516121 403563 4 11) 001353. 27-1845 3-4-1 9 040 )65
740 547000 40522400J 0013513 27-202g4i0 9-01504 1
741 5490S1 406:6 jon 00134.85 2/-2213 152 9-0491 14.
742 5.^0604 403518488 00134,7 27-23. 6; 69 y-o.-)3133

743 | 552049 410172407 0013459 27-25 050. 9-05/248

744 , 55 5 in 41 1830784 00134-1 1 27-27 )3634 .9-0.1]: 09
745 55 ‘>0 15

413493625 00.3423 27" 9 .ohm 9 065 67
740 5565 ID 15160930 0013 0.) 27-3 130 06 9'0()., ) 22
747 558009 4.6832723 Ov, 13387 2/ ..3 150. .7 9'0; 34, 2
74S 559501 U85089Q2 001 .369 i / *. /OSS/ 9- 775 19
749 561001 120180749 0013351 2, -30, 7b:)4-i g'OS 1563
750 I 562500 4-2 i h/.)(K ' 0 13 33 2, >?9 • 0 ■■()'



TR. 25 . SQUARES, CUBES, RECIPROCALS, AND ROOTS. 481

Numb. Square. Cube. Recipr. Sq. Root. C. Root. |

751 504001 423564751 0013316 27-4043792 •■03y639
752 565504 425259008 0013298 27'4226184 9-093672
753 507009 426957777 0013280 27-4408455 9-097701
754 508516 428661064 0013263 27-4590(i04 9-101726
755 5/0025 4303688/5 0013245 27-4772633 9-105748
7-5 () 571530 432081 2 i 6 0013228 27-4954542 9-109766757

5/3049 433798003 0013210 27-5136330 9-113781
753 574564 435519512 0013193 27-53179U8 9-n7793
759 076O81 437245479 0013175 27-5499546 0-121801
760 577600 438976000 0013158 27-5680975 9-125805
761 579121 440711081 0013141 27-5862284 Q-12Q806
762 580644 442450728 0013123 27-6043475 9-133803
7 03 582160

1
444194947 0013106 27-6224546 9-137797

764
583696 1 445 9 43/44 0013089 27-6405499 9-141788

7b5 585225 1
447697125 0013072 27-6586334 9-145774

■ 766
580756 | 44^455096 0013055 27-6767050 9-1 49757

767 588289 451217663 0013038! 27-6947648 1 9-153737
7 08 589824 452984832 0013021 27-7128129 9-157713
709 591361 434756609 OOl3004 27-73084g2 9-161686
770 592900 456533000 0012987 27-7498739 9-165656
771 594441 458314011 0012970 27-/668S68 g -169622
77 2 595984 460099048 0012953 27-7848880 9-173585
773 597529 461880917 0012937 27"8028 775 0-17/544
774 599076 403684824 0012C)20 27-8208555 9-181500
775 000625 465484375 0012903 27 -8388218 9-185452
776 602176 467288576 0012887 27'8567766 9-189401
777 003729 469097133 0012870 27-8747197 9-193347
778 005284 470910952 0012S53 27-8926514 9-197289
779 '.06841 472729139 0012837 27'9105715 0-201228

70O 608 100 474552000 0012821 2/ -9284801 9-205164
781 6O.196I 4763/9541 0012804 27-9463772 9-209096
7 82 01 1-j 24 478/11768 0012788 27-9642629 9-213025
783 613089 480048687 0012771 27-9821372 9-216950
784 614056 4818.00304 0012755 28-0000000 9-220872
785 616225 483736025 0012739 28 -Ol7o515 9-224791
786 617796 485587650 0012723 28'035d9i5 9-228706
787 619369 487443403 0012/06 28-0535203 9-232018
788 620944 489303872 0012690 2S-0713377 9-237527
789 622.521 49II69O69 0012674 28-0891438 9-240433
790 624100 493039000 0012058 28-1009386 g-244335
791 625681 494913671 0012642 28-1247222 9-248234
792 627264 496793088 0012626 28-1424946 9-252130
79 3 628849 4986772.57 0012610 28-1602557 9-256022
794 630436 500566184 0012594 28-1780056 92599H
795 632025 502459875 0012579 28-1957444 9-263797
796 633616 504358336 0012563 28-2134720 9-267679
797 635209 506261573 0012547 28-2311884 9-271559
793 636804 508169502 0012531 28-2488938 9-2/5435
799 638401 510082399 001251L 28-2665881 9-279308
800 640000 51200000C 00125 28-2842715 9-283177
VOL. I. KK



4S2 SQUARES,CUBES, RECIPROCALS,AND ROOTS. TR. 25.

Numb Square Cube. Recipr. Sq. Root. (3. Root.
SOI 641601 513922401 0012484 28-3019434 9-28/044
802 643204 515S4960S 001246c 28-3196045 9-290907
803 644809 517781027 0012453 28-3372546 9-294767
804 646416 519718464 0012438 28-3548938 9-298623
805 648025 521660125 (XI12422 28-3725219 9-302477
806 649636 523606616 0012407 28-3901391 g-306327
S07 651249 525557943 0012392 28-4077454 9-310175
80S 652864 527514112 0012376 28-4253408 9-314019
80g 654481 529475129 0012361 28-4429253 9-317859
S10 656100 531441000 0012346 28-4 604989 9-321697
811 657721 533411731 0012330 28-4780617 9-325532
812 659344 535387328 0012315 28-4956137 9-329363
813 oOogO'9 537366797 0012300 28-5131549 9-333191
S14 662596 539353144 0012285 28-5306352 9-337016
815 664225 541343375 0012270 28-5482048 9-340838
816 665856 54333S4g6 0012255 28-5657137 9-344657
817 6674S9 545338513 0012240 28-5832119 9-348473
818 669124 547343432 0012225 28-6006993 9-352285
819 670761 549353259 0012210 28-6181760 9-356095
820 672400 551368000 00121Q5 28-6356421 9-350901
821 674041 553387664 0012180 28-0530976 g-303704
S22 675684 555412248 0012165 28-6705424 9-367505
823 677329 557441767 0012151 28-68/9766 9-371302
824 67S976 559470224 0012136 2S-7054002 9-375096
825 6S0D25 561515625 0012121 287228132 9-378887
826 682276 563559976 0012106 28-7402157 9-382675
62 7 683929 565609283 0012092 2S7576077 9-386460
828 685584 56766355 2 0012077 28-77498.91 9-390241
829 687241 5697227S9 0012063 28-7923601 9-394020
830 6S69OO 57J787000 0012048 28-8097206 9-397796
831 690561 573856191 0012034 28-8270706 9-101569
832 692224 575930368 0012019 28-8444102 9-405338
833 693S89 57S009537 0012005 2S-8617394 9-409105
834 695556 580093704 0011990 28-8790582 9-412869
835 697225 5821S2875 0011976 28-8963666 9-416630
836 698S96 58427/056 0011962 28-9136646 9-420387
637 7G056g 5S6376253 0011947 28-.9309523 9-424141
838. 702244 588480472 0011933 28-CJ482297 9-427893
839 705921 590589719 0011919 28-9654967 9-431642
840 705600 592/04000 0011905 28-9827535 9-435388
841 7072S1 594823321 0011891 29 0000000 9-43.9130
842 708964 596947688 0011876 29-0172363 9-442870
843 710649 5gqo77i07 0011862 29-0344623 9-446607
S44 712336 601211584 0011848 29-0516781 9-450341
845 714Q25 603351125 0011834 29-06S863 7 9-454071
846 715717 605495736 0011820 29-0860791 9-157799
847 717409 607645423 0011806 29-1032644 9-461524
848 719104 609800192 001179^ 29-1204396 g-465247
84g 720801 6U96004Q 0011779 29-1376046 9-468966
850 722500 | 644125000 0011765 29-1547595 9-472682 I
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Numb. Square. Cube. Recipr. Sq. Root. C. Root.
851 724201 616295051 0011751 20M7i9043 9-476395
852 725904 618470208 0011737 29-18Q0390 9-480106
853 727609 620650477 ooi1723 29-2061637 9-483813
854 72g310 622835864 0011710 29'2232784 9-487518
855 731025 625026375 0011696 29-2403830 9-491219
856 732736 627222016 0011682 29-2574777 9-49'1918
857 734449 629422793 OOH669 29-2745623 9-498614
858 736164 631628712 0011655 29-2916370 g-502307
859 737SSI 633839779 0011641 29-3087018 9-505998
660 739600 636056000 0011628 29-32 57566 9-509685
861 741321 638277381 0011014 29-3428015 q-513369
862 743044 640503928 0011601 29-3598365 9-517051
863 74-1769 642735647 0011587 29-37(j86l6 g-520730
864 746I96 644972544 0011574 29-3938769 y-524406
865 748225 647214625 0011561 29-4108823 q-528070
866 7-I9956 649461896 0011547 29-4278779 9-531749
867 75 lO'S9 651714303 0011534 29-4448637 9-535417
868 753424 653972032 0011521 29-4618397 Q-53QOS1
S69 755161 65623490Q 0011507 29-4788059 9-542743
870 756 QOO 658503000 0011494 29-4957624 9-546402
871 75 8641 6607763 11 0011481 29-512709! 9-550058
872 760384 663054848 0011468 2b-520646l 9-553712
873 762129 665338617 0011455 29-5405734 g-55/363
874 763876 667627624 0011442 29-5634910 9-5610)0
875 76'56'25 669921875 0011429 29-5803g89 9-564655
876 767376 672221376 001141O 29-597'-i972 9-568297
8 77 769129 074520133 0011403 29-6141858 9'57iy37
878 770884 676836152 0011390 29-6310648 9-575574
879 772641 679151439 0011377 29-6479325 9-579208
880 774400 681472000 0011363 29-6647939 9-582839
8S1 776161 683797841 0011351 29-6810442 g-586468
8S2 777924 68612S968 0011338 29-6g84848 9-5900y3
883 779689 688465387 0011325 297153159 9'5937l6
884 781456 6ij0807104 OOI1312 29-7321375 9-597337
885 783225 693154125 001 1 299 29 7439490 9-600954
886 784996 6g5 5 064 5 6 0011287 29-7657521 y-004 5 69
S87 786769 697864103 OOH27I 29-7825452 9-608181
888 788544 700227072 0011261 29-7993289 9-611791
889 790321 702595369 0011249 29-8i6l030 9-615397
890 792100 704969000 0011236 29'83286'7S 9-619001
891 793881 707347971 0011223 29-8496231 9-622603
892 795664 709732288 0011211 29-8663690 9-626201
893 797449 712121957 0011198 29-8831056 9-629797
894 760236 714516984 0011186 29-8998328 9-633390
895 801025 716917375 0011173 29-9165506 9-636981
S96 802816 719323136 0011161 29-9332591 9-610569
897 804609 721734273 0011148 29-9499583 9-644154
898 806404 724150792 0011136 29-9666481 9-647736
899 808201 726572699 0011123 29-9833287 g-651316
900 810000 729OOOOOO 0011111 30-0000000 9-654393
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f

Numb. Square. Cube. Recipr.
901 811801 731432/01 OOHO99
902 813604 733870808 0011086
903 815409 736314327 0011074
904 817216 738763264 0011062
905 819025 741217625 0011050
906 820836 743677416 0011038
907 822649 746142643 0011025
908 824464 748613312 0011013
909 826281 75108Q429 0011001
910 8281'JO 753571000 OOIO989
9H 829921 756058031 0010977
912 831744 758550528 0010965
913 833569 761048497 0010953
914 835396 763551944 0010941
915 S37225 766060875 0010929
916 839056 768575296 0010917
917 840889 771095213 0010905
918 S42724 773620632 0010893
919 844561 776151559 0010881
920 846400 778688000 0010S70
921 848241 781229961 0010858
922 850084 783777448 0010846
923 851929 786330467 0010834
924 S53776 78S8S9024 0010823
925 855625 791453125 0010810
926 857476 794022776 0010799
927 859329 796597983 0010787
928 861184 799178752 0010776
929 863041 801765089 0010764
930 864900 804357000 0010753
931 866761 806954491 0010741
932 868624 809557568 0010730
933 870489 812166237 0010718
934 872356 814780504 0010707
935 874225 817400375 OOIO695
936 876096 820025856 0010684
937 8 77969 822656953 0010672
938 879844 825293672 OOIO661
939 881721 827936019 0010650
940 883600 830584000 0010638
911 885481 833237621 OOlOb'27
942 887364 835896888 OOIO616
943 889249 838561807 0010604
944 891136 841232384 0010593
945 893025 843908625 0010582
946 894916 846590536 0010571
947 8968O9 849278123 0010560
948 8g8704 851971392 0010549
949 900601 854670349 0010537
950 902500 857375000 0010526

Sq. Root. C. Root.
30-0166020
30-0333148
30-0499584
30-0065928
3008321 79
30-0008339
30-1164407
30-1330383
30-1496269
30-1662063
30-1827/65
30-1993377
30-2158899
30-2324329
30-2489669
30-2654919
30-2820079
30-2985148
30-3150128
30-3315018
30-3479818
30-3644529
30-3809151
30-3973683
30-4138127
30-4302481
30-4466747
30-4630924
30-4795013
30-4g59014
30-5122926
30-5286750
30-5450487
30-5614136
30-5777697
30-594 11 71
30-6104557
30-6267857
30-6431069
30-659'il94
30-6757233
30-6920185
30-7083051
30-7245830
30-7408523
30-7571130
30-7733651
30-789608630-8058436
30-8220700

9-658468
9-662040
9-665609
9-669176
9-672740
9-676301
9-679860
9-683416
9-686970
9690521
9-694069
9-69760
9-701158
9-704698
9-708236
9-711772
9-715305
9-718835
9-722363
9-725888
9-729410
9-732930
9-736448
9-739963
9743475
9-746985
9750493
9753998
9-757500
9-761000
9-76'4497
9767992
9771484
9774974
9 778461
9-782946
9785428
9-788908
9792380
979586I
9-799333
9-802803
9-806271
9-S09736
9-813198
g-8i6659
9-820117
9-823572
9-827025
9-830475

JA
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Numb. Square. Cube.

951 904401 860085351
952 906304 862801408
953 90S2O9 805523177
954 910116 868250664
955 912025 870983875
956 913936 873722816
957 915849 876467493
958 917764 879217912
959 919681 881974079
960 921600 884736000
961 923521 887503681
962 g25444 890277128
963 927369 893056347
964 929296 895841344
965 931225 898632125
966 933156 901428696
967 935089 904231063
96s 937024 907039232
969 938961 g09853209
970 Q40900 912673000
971 942841 915498611
972 944784 918330048
97 3 946729 921167317
974 948676 924010424
975 950625 926859375
976 952576 929714176
977 954529 932574833
978 956484 935441352
979 958441 938313739
980 960400 941192001
981 962361 944076141
982 964324 946966168
983 966289 949862087
984 968256 952763904
985 970225 955671625
986 972196 958585256
987 974169 961504803
988 976144 964430272
989 978121 967361669
990 98OIOO 970299000
991 982081 973242271
992 984064 976191488
993 9S6049 979146657
994 988036 982107784
995 990025 985074875
996 992016 988047936
997 994009 991026973
998 996004 994011992
9 99 998001 997002999

1000 1000000 1000000000

Recipr. Sq. Root. C. Root.
0010515
0010504
0010493
0010482
0010471
001046'0
0010449
0010438
001042S
0010416'
0010406
0010395
0010384
0010373
0010363
0010352
0010341
0010331
0010320
0010309
0010299
00102S8
0010277
0010267
0010256
0010246
0010235
0010225
0010215
0010204
0010194
0010183
0010173
0010163
0010152
0010142
0010132
0010121
0010111
0010101
0010091
0010081
0010070
0010060
0010050
0010040
0010030
0010020
0010010
001

30-8382879
30-8544972
30-8706981
30-8868904
30-9030743
30-9192497
30-9354166
30-951575J
30-9677251
30- g838668
31- 0000000
31-0161248
3 1 03224 13
31-0483494
31 -0644491
31-0805405
31-0966236
31-1126984
31-1237648
31-1448230
31-1608729
31-1769145
31-1929479
31-2089731
31-2249900
31-2409987
31-2509992
31-2729915
31-2889757
31-3049517
31-3209ig5
31-3368792
31-3528308
31-3687743
31-3847097
31-4006369
31-4165561
31-4324673
31-44S3704
31-4642654
31-4801525
31-4960315
31-5119025
31-5277655
31-5436206
31-5594677
31-5753068
31-5911380
31-6069613
31-6227767

9-833923
9 837309
9-840812
9-844253
9-847692
9-851128
9"S5456l
9-857992
9-801421
9-864848
9-868272
9-871694
9-875113
g-878530
9-881945
9-885357
9-888767
9-892174
9-895580
9-698933
9’902383
9-9057S1
9-909177
9-912571
9-915962
9-919351
9-922738
9-926122
9‘929504
9'932S83
9-936261
9’939636
9-943009
9-946379
9-949747
9'953113

9-956477
9-959839
9-963198
9-966554
9-969909
9-973262
9-976612

9979959
9-983304
9-986648
998999O
9-993328
9-996665
10.000000

BNP OF YOL. I,



ERRATA.

Page 264, line 5 from the bottom, for 5 5, read 5r 5,
Page 266, line I, for read 4ct3i 2 .
Page 430, line 22, for §t h, read £/6.

T. DAVISON, Lombard-street)
Whiiefriars, London.
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