fortwährend falsch an, weil ihm eben Roth fehlte, und zwar in solchem Grade, dass, als man ihm pulverförmigen Karmin in einem Glase zeigte und ihn fragte, wie das aussehe, er sagte: "Dunkel; es könnte vielleicht Roth sein." Wo also eine solche Unterempfindlichkeit für eine der Grundfarben existirt, da können die Farben nicht in der gewöhnlichen Weise unterschieden und benannt werden.

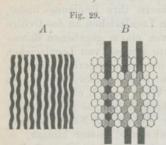
Unterscheidungsvermögen der Netzhaut.

Wir verlassen jetzt die Erregungszustände der Netzhaut im Allgemeinen und gehen auf das Unterscheidungsvermögen über und auf die örtliche Verschiedenheit desselben. Es ist klar, dass, da in der Netzhaut nur eine bestimmte Summe von Sehnervenfasern ihre Endigung findet, jedesmal auch nur eine bestimmte Summe von Localzeichen an das Gehirn überliefert werden kann. Wir werden also von einem gegebenen Raume des Sehfeldes auch nur immer eine bestimmte Summe von Localzeichen bekommen können. Es wird demnach unser Unterscheidungsvermögen eine gewisse Grenze haben, und wenn wir diese Grenze überschreiten, so werden die Farbeneindrücke zusammenfliessen. Wenn wir z. B. eine Abwechslung von sehr kleinen blauen und gelben Feldern haben, so werden diese Felder blau und gelb erscheinen, wenn wir sie in der Nähe ansehen. Entfernen wir uns aber weiter, wird der Sehwinkel immer kleiner, so werden sie endlich zusammenfliessen, die Farben werden sich aufheben und wenn wir die Felder gegeneinander richtig abgepasst haben, werden wir neutrales Grau erhalten.

Es wird dies von den Malern benützt, um bei grossen Bildern, die für einen weiten Abstand bestimmt sind, Farben durch Addition auf der Netzhaut zu mischen. So setzen sie z. B., namentlich der berühmte Landschaftsmaler Hildebrandt bediente sich dieses Kunstgriffs, Zinnober und Grün nebeneinander um Gelb zu erzeugen.

Es fragt sich nun, welches ist die Grenze unseres Unterscheidungsvermögens, und wie stimmt diese überein mit der Grösse unserer Netzhautelemente? Wir sind durch anderweitige Gründe dazu geführt die Zapfen als die ersten Angriffspunkte für das Licht anzusehen. Wir müssen daher auch von vorne herein der Meinung sein, dass nur zwei Punkte nebeneinander als zwei Punkte gesehen werden können, die sich auf zwei verschiedenen Zapfen abbilden, dass aber zwei Punkte, die so nahe bei einander liegen, dass sie Beide auf einem und demselben Zapfen abgebildet werden können, auch nur einen Eindruck geben. Diese Voraussetzung bestätigt sich auch. Wenn man mit stark beleuchteten Linien die Gesichtsschärfe untersucht, indem man zusieht, wie weit man sich von ihnen entfernen und sie doch getrennt sehen kann, und daraus die Abstände der Netzhautbilder von einander berechnet, so findet man, dass diese Abstände mit der Breite der Zapfen übereinstimmen. Helmholtz unterschied noch zwei weisse Striche, die so weit von einander entfernt waren, dass zwei gerade Linien in gleicher Höhe von der Mitte jedes dieser graden Striche zu den correspondirenden Punkten des Netzhautbildes gezogen sich unter einem Winkel von 64" kreuzten. Aber nicht immer und namentlich nicht an punktförmigen Bildern bewährt sich die Sehschärfe bis zu diesem Grade. Zwei Sterne, deren Winkelabstand 30 bis 60"

n die ch so urben Roth vergegen nn er


chien

einer lären ntern Inreben ihrer sei, venig Fall trum

e er olche für z. B. nuss, eorie ihmt eine eine ögen rben

olche vach anihmt Fälle Roth eser r zu ches icht,

dassich, toth. beträgt, erscheinen auch nicht kurzsichtigen Augen meistens als ein Stern. Helmholtz hat bei seinen Beobachtungen die merkwürdige Wahrnehmung gemacht, dass zuletzt die schwarzen und weissen Striche nicht gerade bleiben, sondern dass die schwarzen sich etwas im Zickzack biegen und die dazwischen liegenden weissen kleine Anschwellungen bekommen. Er leitet dies von dem Mosaik der Zapfen in der Fovea centralis retinae ab und von der Art und Weise, wie die weissen Striche, die ja das Erregende sind, die in Sechsecken neben einander gestellten Zapfenbasen beleuchten. Die Figuren 29 zeigen A die Erscheinung selbst und B die schematische Darstellung der Art und Weise, wie sie nach der Ansicht von Helmholtz zu Stande kommt. Die directen Versuche ergeben also, dass wir so scharf sehen, wie wir dies theoretisch nur voraussetzen können, dass

also unser Auge als optischer Apparat scheinbar Alles leistet, was nur von ihm erwartet werden kann. Wir werden später Gelegenheit haben, uns darüber einigermassen zu wundern, indem wir sehen werden, dass das Auge als optischer Apparat keineswegs im höchsten Grade vollkommen ist, dass es keineswegs das leistet, was ein idealer optischer Apparat leisten sollte, nämlich alle Strahlen von einem deutlich gesehenen Punkte wieder auf einen Punkt der Netz-

haut zu vereinigen. Es kommt aber dafür etwas Anderes in Betracht. Wir tasten mit den Augen in ähnlicher Weise auf dem Gesichtsobjecte herum, wie ein Blinder mit seinen Fingerspitzen auf einem Gegenstande herumtastet, um sich eine klare Vorstellung von der Beschaffenheit, von den Erhebungen und Vertiefungen desselben zu verschaffen. Indem wir mit den Augen auf dem gesehenen Gegenstande herumgleiten, und somit die Bilder der kleinen Gegenstände von einem Zapfen auf den anderen übergehen lassen, verschaffen wir uns deutlichere Vorstellungen, als sie uns ein einmaliger Eindruck verschaffen könnte.

Dass dem wirklich so sei, davon überzeugt man sich leicht, wenn man den Lichteindruck so kurz macht, dass es unmöglich ist, während dieser kurzen Zeit eine merkliche Augenbewegung auszuführen. Wenu wir einen rotirenden Farbenkreisel mit dem Lichte des electrischen Funkens beleuchten, so sehen wir die Farben nicht gemischt, sondern wir sehen die einzelnen, verschieden gefärbten Sectoren neben einander stehen. Der electrische Funke dauert nur so kurze Zeit, dass der Kreisel während dieser Zeit nur einen sehr kleinen Bruchtheil seiner Umdrehung ausführen kann, dass er sich während dieser Zeit, bei weitem nicht um die Breite eines Sectors gedreht hat, denn sonst müssten die Farben gemischt sein. Nun kann ich diese Beleuchtung durch den electrischen Funken stark genug machen, dass ich die Gegenstände völlig hell sehe; es wird mir aber niemals gelingen, die Gegenstände so deutlich zu sehen, wie ich sie beim ruhigen Ansehen und dauernder Beleuchtung sehe, selbst wenn diese Beleuchtung verhältnissmässig schwach ist. Wenn des Nachts ein starker Blitz die Landschaft erhellt, so sieht man alle Gegenstände hell beleuchtet, aber nicht einmal in der Deutlichkeit, in der man sie in der Dämmerung sieht, weil eben der Eindruck ein

so l

gesp man Seho kami und mitt für man Geg unde verr bild in i druc Geg

und Eint Stel sond N. op im S Zeie

man nach Papid üusse wied Fleel liegt von linie. retin Durc

halb

das]

so kurzer ist, dass es nicht möglich ist, sich in den Gesichtsobjecten sicher zu orientiren.

Diese Schärfe des Unterscheidungsvermögens, von der wir eben gesprochen haben, existirt aber nur in der Fovea centralis retinae. Je mehr man sich von dieser entfernt, je mehr man in das sogenannte indirecte Sehen kommt, um so schwächer wird das Unterscheidungsvermögen. Man kann sieh davon überzeugen, indem man einen Gegenstand fest ansieht und das eine Auge schliesst und dann einen zweiten Gegenstand unmittelbar neben denselben bringt. Man wird dann, wenn man das Auge für diese Sehweite einstellt, ihn vollkommen scharf sehen können. Bleibt man aber in der Fixation für den anderen Gegenstand und bewegt diesen Gegenstand seitlich fort, so wird man bemerken, dass das Bild immer undeutlicher wird. Gegen die Ora serrata hin ist das Unterscheidungsvermögen ein so stumpfes, dass wir die Gegenstände, die sich dort abbilden, die also nahe der Grenze unseres Schfeldes liegen, nicht mehr in ihrer Form erkennen, dass wir nur noch einen unbestimmten Eindruck davon haben, dass sich daselbst hellere und dunklere und farbige Gegenstände befinden.

Mariotte's blinder Fleck.

Es gibt einen Punkt der Netzhaut, mit dem wir gar nichts sehen, und das ist die Eintrittsstelle des N. opticus. Weshalb wir mit dieser Eintrittsstelle nicht sehen ist begreiflich. Wir sehen nämlich mit dieser Stelle nicht, weil hier keine Zapfen- und Stäbchenschicht vorhanden ist, sondern das Licht, das hier auffällt, nur die austretenden Fasern des N. opticus trifft. Mariotte bemerkte zuerst, dass man diesen blinden Fleck im Sehfelde sich subjectiv bemerklich machen kann. Man macht zwei Zeichen auf einem Papiere, ein Kreuz und eine Kreisscheibe (siehe Fig. 30).

Fig. 30.

*

tern.

iegen

men.

tinae

rende

hten.

ische

elm-

wir

dass parat

ihm päter

rden,

dass ealer

mlich

enen

Netz-

acht.

jecte

wir

somit leren s sie

wenn rend Venu Funwir

inder

reisel

hung

t um

rben

chen

sehe;

h zu

itung

ist.

man

ikeit,

ein

man schliesst dann das eine Auge und fixirt dasjenige Zeichen, welches nach der Nasenseite hin liegt, und nun nähert und entfernt man das Papier. Dann kommt man auf eine Stellung, wo bei fester Fixation das äussere Bild, das an der Schläfenseite, verschwindet. Nähert man das Bild wieder oder entfernt es, so kommt es wieder zum Vorschein. Dieser blinde Fleck im Schfelde heisst nach Mariotte der Mariotte'sche Fleck. Er liegt etwa 15° nach auswärts vom Centrum des Schfeldes, das heisst von dem fixirten Punkte oder von der in sich selbst projicirten Gesichtslinie. Auf der Netzhaut liegt er also etwa 15° nach innen vom Centrum retinae. Er erstreckt sich nämlich von 13° bis 19°, indem er einen Durchmesser von beiläufig 6° oder etwas darüber hat. Will man deshalb die beistehende Figur zum Versuche benutzen, so bringt man das Buch, um eins der Zeichen verschwinden zu lassen, in eine Entfer-